ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtolensing by Dark Matter Revisited

90   0   0.0 ( 0 )
 نشر من قبل Andrey Katz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Femtolensing of gamma ray bursts (GRBs) has been put forward as an exciting possibility to probe exotic astrophysical objects with masses below $10^{-13}$ solar masses such as small primordial black holes or ultra-compact dark matter minihalos, made up for instance of QCD axions. In this paper we critically review this idea, properly taking into account the extended nature of the source as well as wave optics effects. We demonstrate that most GRBs are inappropriate for femtolensing searches due to their large sizes. This removes the previous femtolensing bounds on primordial black holes, implying that vast regions of parameter space for primordial black hole dark matter are not robustly constrained. Still, we entertain the possibility that a small fraction of GRBs, characterized by fast variability can have smaller sizes and be useful. However, a large number of such bursts would need to be observed to achieve meaningful constraints. We study the sensitivity of future observations as a function of the number of detected GRBs and of the size of the emission region.



قيم البحث

اقرأ أيضاً

259 - Kris Sigurdson 2009
We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple when it is relativistic, is a viable dark matter candidate provided it has never been in thermal equilibrium with the particles of the standard model. This hidden hot dark matter may reheat to a lower temperature and number density than the visible Universe and thus account, simply with its thermal abundance, for all the dark matter in the Universe while evading the typical constraints on hot dark matter arising from structure formation. We find masses ranging from ~3 keV to ~10 TeV. While never in equilibrium with the standard model, this class of models may have unique observational signatures in the matter power spectrum or via extra-weak interactions with standard model particles.
This white paper describes the basic idea for indirect dark matter searches using antideuterons. Low energy antideuterons produced by dark matter annihilations/decays provide an attractive dark matter signature, due to the low astrophysical backgroun d. The current and future experiments have a strong potential to detect antideuterons from dark matter. They are complementary not only with each other, but also with other dark matter searches.
The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abunda nce without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.
117 - Mingzhe Li , Yifu Cai , Hong Li 2010
In this paper we study the evolution of cosmological perturbations in the presence of dynamical dark energy, and revisit the issue of dark energy perturbations. For a generally parameterized equation of state (EoS) such as w_D(z) = w_0+w_1frac{z}{1+z }, (for a single fluid or a single scalar field ) the dark energy perturbation diverges when its EoS crosses the cosmological constant boundary w_D=-1. In this paper we present a method of treating the dark energy perturbations during the crossing of the $w_D=-1$ surface by imposing matching conditions which require the induced 3-metric on the hypersurface of w_D=-1 and its extrinsic curvature to be continuous. These matching conditions have been used widely in the literature to study perturbations in various models of early universe physics, such as Inflation, the Pre-Big-Bang and Ekpyrotic scenarios, and bouncing cosmologies. In all of these cases the EoS undergoes a sudden change. Through a detailed analysis of the matching conditions, we show that delta_D and theta_D are continuous on the matching hypersurface. This justifies the method used[1-4] in the numerical calculation and data fitting for the determination of cosmological parameters. We discuss the conditions under which our analysis is applicable.
250 - Qiang Yuan , Bin Yue (2 2009
The cosmic electron and positron excesses have been explained as possible dark matter (DM) annihilation products. In this work we investigate the possible effects of such a DM annihilation scenario during the evolution history of the Universe. We fir st calculate the extragalactic $gamma$-ray background (EGRB), which is produced through the final state radiation of DM annihilation to charged leptons and the inverse Compton scattering between electrons/positrons and the cosmic microwave background. The DM halo profile and the minimal halo mass, which are not yet well determined from the current N-body simulations, are constrained by the EGRB data from EGRET and Fermi telescopes. Then we discuss the impact of such leptonic DM models on cosmic evolution, such as the reionization and heating of intergalactic medium, neutral Hydrogen 21 cm signal and suppression of structure formation. We show that the impact on the Hydrogen 21 cm signal might show interesting signatures of DM annihilation, but the influence on star formation is not remarkable. Future observations of the 21 cm signals could be used to place new constraints on the properties of DM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا