ﻻ يوجد ملخص باللغة العربية
Let $n$ be a positive integer. In 1915, Theisinger proved that if $nge 2$, then the $n$-th harmonic sum $sum_{k=1}^nfrac{1}{k}$ is not an integer. Let $a$ and $b$ be positive integers. In 1923, Nagell extended Theisingers theorem by showing that the reciprocal sum $sum_{k=1}^{n}frac{1}{a+(k-1)b}$ is not an integer if $nge 2$. In 1946, ErdH{o}s and Niven proved a theorem of a similar nature that states that there is only a finite number of integers $n$ for which one or more of the elementary symmetric functions of $1,1/2, ..., 1/n$ is an integer. In this paper, we present a generalization of Nagells theorem. In fact, we show that for arbitrary $n$ positive integers $s_1, ..., s_n$ (not necessarily distinct and not necessarily monotonic), the following reciprocal power sum $$sumlimits_{k=1}^{n}frac{1}{(a+(k-1)b)^{s_{k}}}$$ is never an integer if $nge 2$. The proof of our result is analytic and $p$-adic in character.
By virtue of Baileys well-known bilateral 6psi_6 summation formula and Watsons transformation formula,we extend the four-variable generalization of Ramanujans reciprocity theorem due to Andrews to a five-variable one. Some relevant new q-series ident
Recently, Corvaja and Zannier obtained an extension of the Subspace Theorem with arbitrary homogeneous polynomials of arbitrary degreee instead of linear forms. Their result states that the set of solutions in P^n(K) (K number field) of the inequalit
Let $G$ be a connected reductive group over a $p$-adic local field $F$. We propose and study the notions of $G$-$varphi$-modules and $G$-$(varphi, abla)$-modules over the Robba ring, which are exact faithful $F$-linear tensor functors from the catego
Caratheodory showed that $n$ complex numbers $c_1,...,c_n$ can uniquely be written in the form $c_p=sum_{j=1}^m rho_j {epsilon_j}^p$ with $p=1,...,n$, where the $epsilon_j$s are different unimodular complex numbers, the $rho_j$s are strictly positive
In this paper, we study the generalized Lebesgue-Nagell equation [ x^2+7^{2k+1}=y^n. ] This is the last case of equations of the form $x^2+q^{2k+1}=y^n$ with $kgeq0$ and $q>0$ where $mathbb{Q}(sqrt{-q})$ has class number one. Our proof is based on the modular method and the symplectic argument.