ﻻ يوجد ملخص باللغة العربية
We use a reference state based on symmetry-restored states from deformed mean-field or generator-coordinate-method (GCM) calculations in conjunction with the in-medium similarity-renormalization group (IMSRG) to compute spectra and matrix elements for neutrinoless double-beta ($0 ubetabeta$) decay. Because the decay involves ground states from two nuclei, we use evolved operators from the IMSRG in one nucleus in a subsequent GCM calculation in the other. We benchmark the resulting IMSRG+GCM method against complete shell-model diagonalization for both the energies of low-lying states in $^{48}$Ca and $^{48}$Ti and the $0 ubetabeta$ matrix element for the decay of $^{48}$Ca, all in a single valence shell. Our approach produces better spectra than either the IMSRG with a spherical-mean-field reference or GCM calculations with unevolved operators. For the $0 ubetabeta$ matrix element the improvement is slight, but we expect more significant effects in full ab-initio calculations.
Efforts to describe nuclear structure and dynamics from first principles have advanced significantly in recent years. Exact methods for light nuclei are now able to include continuum degrees of freedom and treat structure and reactions on the same fo
The goal of the present paper is twofold. First, a novel expansion many-body method applicable to superfluid open-shell nuclei, the so-called Bogoliubov in-medium similarity renormalization group (BIMSRG) theory, is formulated. This generalization of
We use the newly developed Multi-Reference In-Medium Similarity Renormalization Group to study all even isotopes of the calcium and nickel isotopic chains, based on two- plus three-nucleon interactions derived from chiral effective field theory. We p
Over the past decade the in-medium similarity renormalization group (IMSRG) approach has proven to be a powerful and versatile ab initio many-body method for studying medium-mass nuclei. So far, the IMSRG was limited to the approximation in which onl
We have developed a novel ab initio Gamow in-medium similarity renormalization group (Gamow IMSRG) in the complex-energy Berggren framework. The advanced Gamow IMSRG is capable of describing the resonance and nonresonant continuum properties of weakl