ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic Sensing

112   0   0.0 ( 0 )
 نشر من قبل Martianus Frederic Ezerman
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Holographic representations of data encode information in packets of equal importance that enable progressive recovery. The quality of recovered data improves as more and more packets become available. This progressive recovery of the information is independent of the order in which packets become available. Such representations are ideally suited for distributed storage and for the transmission of data packets over networks with unpredictable delays and or erasures. Several methods for holographic representations of signals and images have been proposed over the years and multiple description information theory also deals with such representations. Surprisingly, however, these methods had not been considered in the classical framework of optimal least-squares estimation theory, until very recently. We develop a least-squares approach to the design of holographic representation for stochastic data vectors, relying on the framework widely used in modeling signals and images.



قيم البحث

اقرأ أيضاً

Holographic representations of data enable distributed storage with progressive refinement when the stored packets of data are made available in any arbitrary order. In this paper, we propose and test patch-based transform coding holographic sensing of image data. Our proposal is optimized for progressive recovery under random order of retrieval of the stored data. The coding of the image patches relies on the design of distributed projections ensuring best image recovery, in terms of the $ell_2$ norm, at each retrieval stage. The performance depends only on the number of data packets that has been retrieved thus far. Several possible options to enhance the quality of the recovery while changing the size and number of data packets are discussed and tested. This leads us to examine several interesting bit-allocation and rate-distortion trade offs, highlighted for a set of natural images with ensemble estimated statistical properties.
A recent line of research termed unlabeled sensing and shuffled linear regression has been exploring under great generality the recovery of signals from subsampled and permuted measurements; a challenging problem in diverse fields of data science and machine learning. In this paper we introduce an abstraction of this problem which we call homomorphic sensing. Given a linear subspace and a finite set of linear transformations we develop an algebraic theory which establishes conditions guaranteeing that points in the subspace are uniquely determined from their homomorphic image under some transformation in the set. As a special case, we recover known conditions for unlabeled sensing, as well as new results and extensions. On the algorithmic level we exhibit two dynamic programming based algorithms, which to the best of our knowledge are the first working solutions for the unlabeled sensing problem for small dimensions. One of them, additionally based on branch-and-bound, when applied to image registration under affine transformations, performs on par with or outperforms state-of-the-art methods on benchmark datasets.
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble of signals that has single common information cite{Baron:2009vd}. In this paper, we propose a generalized DCS (GDCS) which can improve sparse signal detection performance given arbitrary types of common information which are classified into not just full common information but also a variety of partial common information. The theoretical bound on the required number of measurements using the GDCS is obtained. Unfortunately, the GDCS may require much a priori-knowledge on various inter common information of ensemble of signals to enhance the performance over the existing DCS. To deal with this problem, we propose a novel algorithm that can search for the correlation structure among the signals, with which the proposed GDCS improves detection performance even without a priori-knowledge on correlation structure for the case of arbitrarily correlated multi signal ensembles.
Spectrum sensing is a fundamental operation in cognitive radio environment. It gives information about spectrum availability by scanning the bands. Usually a fixed amount of time is given to scan individual bands. Most of the times, historical inform ation about the traffic in the spectrum bands is not used. But this information gives the idea, how busy a specific band is. Therefore, instead of scanning a band for a fixed amount of time, more time can be given to less occupied bands and less time to heavily occupied ones. In this paper we have formulated the time assignment problem as integer linear programming and source coding problems. The time assignment problem is solved using the associated stochastic optimization problem.
112 - Zhipeng Xue , Junjie Ma , 2017
Turbo compressed sensing (Turbo-CS) is an efficient iterative algorithm for sparse signal recovery with partial orthogonal sensing matrices. In this paper, we extend the Turbo-CS algorithm to solve compressed sensing problems involving more general s ignal structure, including compressive image recovery and low-rank matrix recovery. A main difficulty for such an extension is that the original Turbo-CS algorithm requires prior knowledge of the signal distribution that is usually unavailable in practice. To overcome this difficulty, we propose to redesign the Turbo-CS algorithm by employing a generic denoiser that does not depend on the prior distribution and hence the name denoising-based Turbo-CS (D-Turbo-CS). We then derive the extrinsic information for a generic denoiser by following the Turbo-CS principle. Based on that, we optimize the parametric extrinsic denoisers to minimize the output mean-square error (MSE). Explicit expressions are derived for the extrinsic SURE-LET denoiser used in compressive image denoising and also for the singular value thresholding (SVT) denoiser used in low-rank matrix denoising. We find that the dynamics of D-Turbo-CS can be well described by a scaler recursion called MSE evolution, similar to the case for Turbo-CS. Numerical results demonstrate that D-Turbo-CS considerably outperforms the counterpart algorithms in both reconstruction quality and running time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا