ترغب بنشر مسار تعليمي؟ اضغط هنا

Pristine Dwarf-Galaxy Survey I: A detailed photometric and spectroscopic study of the very metal-poor Draco II satellite

52   0   0.0 ( 0 )
 نشر من قبل Nicolas Longeard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the faint Milky Way satellite Draco II (Dra II) from deep CFHT/MegaCam broadband $g$ and $i$ photometry and narrow-band metallicity-sensitive CaHK observations, along with follow-up Keck II/DEIMOS multi-object spectroscopy. Forward modeling of the deep photometry allows us to refine the structural and photometric properties of Dra II: the distribution of stars in colour-magnitude space implies Dra II is old (13.5 $ pm 0.5 $ Gyr), very metal poor, very faint ($ L_V = 180 ^{+124}_{-72} L_odot $), and at a distance $d = 21.5 pm 0.4$ kpc. The narrow-band, metallicity-sensitive CaHK Pristine photometry confirms this very low metallicity ([Fe/H]$ = -2.7 pm 0.1$ dex). Even though our study benefits from a doubling of the spectroscopic sample size compared to previous investigations, the velocity dispersion of the system is still only marginally resolved ($sigma_{vr}<5.9$ km s$^{-1}$ at the 95 per cent confidence level) and confirms that Dra II is a dynamically cold stellar system with a large recessional velocity ($langle v_{r}rangle = -342.5^{+1.1}_{-1.2} $ km s$^{-1}$). We further show that the spectroscopically confirmed members of Dra~II have a mean proper motion of $(mu_alpha^*,mu_delta)=(1.26 pm 0.27,0.94 pm 0.28) $ mas yr$^{-1}$ in the Gaia DR2 data, which translates to an orbit with a pericenter and an apocenter of $21.3 ^{+0.7}_{-1.0}$ and $153.8 ^{+56.7}_{-34.7}$ kpc, respectively. Taken altogether, these properties favour the scenario of Dra~II being a potentially disrupting dwarf galaxy. The low-significance extra-tidal features we map around the satellite tentatively support this scenario.



قيم البحث

اقرأ أيضاً

We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H & K lines and conducted in the northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope (CFHT). This pa per reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterise the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1,000 deg2 in the Galactic halo ranging from b~30 to 78 and covers many known stellar substructures. We demonstrate that, for SDSS stellar objects, we can calibrate the photometry at the 0.02-magnitude level. The comparison with existing spectroscopic metallicities from SDSS/SEGUE and LAMOST shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ~0.2 dex from [Fe/H]=-0.5 down to the extremely metal-poor regime ([Fe/H]<-3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE<-3.0 stars among [Fe/H]Pristine<-3.0 selected stars is 24% and 85% of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H]<-4.0, which can teach us valuable lessons about the early Universe.
We evaluate the rotational velocity of stars observed by the Pristine survey towards the Galactic anticenter, spanning a wide range of metallicities from the extremely metal-poor regime ($mathrm{[Fe/H]}<-3$ dex) to nearly solar metallicity. In the Ga lactic anticenter direction, the rotational velocity ($V_{phi}$) is similar to the tangential velocity in the galactic longitude direction ($V_{ell}$). This allows us to estimate $V_{phi}$ from Gaia early data-release 3 (Gaia EDR3) proper motions for stars without radial velocity measurements. This substantially increases the sample of stars in the outer disc with estimated rotational velocities. Our stellar sample towards the anticenter is dominated by a kinematical thin disc with a mean rotation of $sim -220$ kms. However, our analysis reveals the presence of more stellar substructures. The most intriguing is a well populated extension of the kinematical thin disc down to $mathrm{[Fe/H]} sim -2$ dex, with a scarser extension reaching the extremely metal-poor regime, down to $mathrm{[Fe/H]} sim -3.5$ dex. In addition, a more slowly rotating kinematical thick disc component is also required to explain the observed $V_{ell}$ distribution at $mathrm{[Fe/H]} > -1.5$ dex. Furthermore, we detect signatures of a heated disc, the so-called $Splash$, at metallicities higher than $sim-1.5$ dex. Finally, at $mathrm{[Fe/H]} < -1.5$ dex our anticenter sample is dominated by a kinematical halo with a net prograde motion.
We present a new spectroscopic study of the dwarf galaxy Bootes I (Boo I) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system. We observed 36 high-probability Boo I stars s elected using Gaia Early Data Release 3 proper motions and photometric metallicities from the Pristine survey. Out of those, 29 are found to be Boo Is stars, resulting in an excellent success rate of 80% at finding new members. Our analysis uses a new pipeline developed to estimate radial velocities and equivalent widths of the calcium triplet lines from Gaussian and Voigt line profile fits. The metallicities of 18 members are derived, including 3 extremely metal-poor stars ([Fe/H] < -3.0), which translates into an exceptional success rate of 25% at finding them with the combination of Pristine and Gaia. Using the large spatial extent of our new members that spans up to 4.1 half-light radii and spectroscopy from the literature, we are able to detect a systemic velocity gradient of 0.15+/-0.10 km s-1 arcmin-1 and a small but resolved metallicity gradient of -0.007+/-0.003 dex arcmin-1. Finally, we show that Boo I is more elongated than previously thought with an ellipticity of {epsilon} = 0.68+/-0.15. Its velocity and metallicity gradients as well as its elongation suggest that Boo I may have been affected by tides, a result supported by direct dynamical modelling.
Our Galaxy is known to contain a central boxy/peanut-shaped bulge, yet the importance of a classical, pressure-supported component within the central part of the Milky Way is still being debated. It should be most visible at low metallicity, a regime that has not yet been studied in detail. Using metallicity-sensitive narrow-band photometry, the Pristine Inner Galaxy Survey (PIGS) has collected a large sample of metal-poor ([Fe/H] < -1.0) stars in the inner Galaxy to address this open question. We use PIGS to trace the metal-poor inner Galaxy kinematics as function of metallicity for the first time. We find that the rotational signal decreases with decreasing [Fe/H], until it becomes negligible for the most metal-poor stars. Additionally, the velocity dispersion increases with decreasing metallicity for -3.0 < [Fe/H] < -0.5, with a gradient of -44 $pm$ 4 km$,$s$^{-1},$dex$^{-1}$. These observations may signal a transition between Galactic components of different metallicities and kinematics, a different mapping onto the boxy/peanut-shaped bulge for former disk stars of different metallicities and/or the secular dynamical and gravitational influence of the bar on the pressure-supported component. Our results provide strong constraints on models that attempt to explain the properties of the inner Galaxy.
The Pristine survey is a narrow-band, photometric survey focused around the wavelength region of the Ca II H & K absorption lines, designed to efficiently search for extremely metal-poor stars. In this work, we use the first results of a medium-resol ution spectroscopic follow-up to refine the selection criteria for finding extremely metal-poor stars ($textrm{[Fe/H]} leq -3.0$) in the Pristine survey. We consider methods by which stars can be selected from available broad-band and infrared photometry plus the additional Pristine narrow-band photometry. The spectroscopic sample presented in this paper consists of 205 stars in the magnitude range $14 < V < 18$. Applying the photometric selection criteria cuts the sample down to 149 stars, and from these we report a success rate of 70% for finding stars with $textrm{[Fe/H]} leq -2.5$ and 22% for finding stars with $textrm{[Fe/H]} leq -3.0$. These statistics compare favourably with other surveys that search for extremely metal-poor stars, namely an improvement by a factor of $sim 4-5$ for recovering stars with $textrm{[Fe/H]} leq -3.0$. In addition, Pristine covers a fainter magnitude range than its predecessors, and can thus probe deeper into the Galactic halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا