ترغب بنشر مسار تعليمي؟ اضغط هنا

The top-quark window on compositeness at future lepton colliders

30   0   0.0 ( 0 )
 نشر من قبل Gauthier Durieux
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In composite Higgs (CH) models, large mixings between the top quark and the new strongly interacting sector are required to generate its sizeable Yukawa coupling. Precise measurements involving top as well as left-handed bottom quarks therefore offer an interesting opportunity to probe such new physics scenarios. We study the impact of third-generation-quark pair production at future lepton colliders, translating prospective effective-field-theory sensitivities into the CH parameter space. Our results show that one can probe a significant fraction of the natural CH parameter space through the top portal, especially at TeV centre-of-mass energies.

قيم البحث

اقرأ أيضاً

256 - Gauthier Durieux 2017
We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-to bW^+:bar bW^-$ process. Statistical ly optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.
We study the sensitivity to physics beyond the standard model of precise top-quark pair production measurements at future lepton colliders. A global effective-field-theory approach is employed, including all dimension-six operators of the Warsaw basi s which involve a top-quark and give rise to tree-level amplitudes that interfere with standard-model $e^+e^-to t,bar tto bW^+bar bW^-$ ones in the limit of vanishing $b$-quark mass. Four-fermion and CP-violating contributions are taken into account. Circular-collider-, ILC- and CLIC-like benchmark run scenarios are examined. We compare the constraining power of various observables to a set of statistically optimal ones which maximally exploit the information contained in the fully differential $bW^+bar bW^-$ distribution. The enhanced sensitivity gained on the linear contributions of dimension-six operators leads to bounds that are insensitive to quadratic ones. Even with statistically optimal observables, two centre-of-mass energies are required for constraining simultaneously two- and four-fermion operators. The impact of the centre-of-mass energy lever arm is discussed, that of beam polarization as well. A realistic estimate of the precision that can be achieved in ILC- and CLIC-like operating scenarios yields individual limits on the electroweak couplings of the top quark that are one to three orders of magnitude better than constraints set with Tevatron and LHC run I data, and three to two hundred times better than the most optimistic projections made for the high-luminosity phase of the LHC. Clean global constraints can moreover be obtained at lepton colliders, robustly covering the multidimensional effective-field-theory space with minimal model dependence.
128 - Francois Richard 2017
This note is an attempt to interpret some excesses, not yet significant due to systematics, observed by ATLAS and CMS in various analyses related to the standard channels ttH, ttZ and ttW. It is argued, within a composite interpretation of top partic les, that such excesses are not necessarily related to these channels themselves, although this is not excluded, but due to the underlying presence of either vector-like heavy quarks tprime,bprime or to final states as predicted in composite theories. The outcome of this discussion is that although it will not be easy to reach an exclusive interpretation, the data collected at 13 TeV may establish the origin of this effect as coming from the four top quark topology.
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibilit y for how new electroweak-scale particles could have evaded detection so far is if they carry only electroweak charge, i.e. are color neutral. Future $e^+e^-$ colliders are prime tools to study such new physics. Here, we investigate the sensitivity of $e^+e^-$ colliders to scalar partners of the charged leptons, known as sleptons in supersymmetric extensions of the Standard Model. In order to allow such scalar lepton partners to decay, we consider models with an additional neutral fermion, which in supersymmetric models corresponds to a neutralino. We demonstrate that future $e^+e^-$ colliders would be able to probe most of the kinematically accessible parameter space, i.e. where the mass of the scalar lepton partner is less than half of the colliders center-of-mass energy, with only a few days of data. Besides constraining more general models, this would allow to probe some well motivated dark matter scenarios in the Minimal Supersymmetric Standard Model, in particular the incredible bulk and stau co-annihilation scenarios.
120 - U. Baur 2005
The International Linear Collider (ILC) will be able to precisely measure the electroweak couplings of the top in e+e- -> tt~. We compare the limits which can be achieved at the ILC with those which can be obtained in tt~gamma$ and tt~Z production at the Large Hadron Collider (LHC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا