ﻻ يوجد ملخص باللغة العربية
Spatio-temporal representations in frame sequences play an important role in the task of action recognition. Previously, a method of using optical flow as a temporal information in combination with a set of RGB images that contain spatial information has shown great performance enhancement in the action recognition tasks. However, it has an expensive computational cost and requires two-stream (RGB and optical flow) framework. In this paper, we propose MFNet (Motion Feature Network) containing motion blocks which make it possible to encode spatio-temporal information between adjacent frames in a unified network that can be trained end-to-end. The motion block can be attached to any existing CNN-based action recognition frameworks with only a small additional cost. We evaluated our network on two of the action recognition datasets (Jester and Something-Something) and achieved competitive performances for both datasets by training the networks from scratch.
For action recognition learning, 2D CNN-based methods are efficient but may yield redundant features due to applying the same 2D convolution kernel to each frame. Recent efforts attempt to capture motion information by establishing inter-frame connec
Spatiotemporal and motion features are two complementary and crucial information for video action recognition. Recent state-of-the-art methods adopt a 3D CNN stream to learn spatiotemporal features and another flow stream to learn motion features. In
We propose a method for representing motion information for video classification and retrieval. We improve upon local descriptor based methods that have been among the most popular and successful models for representing videos. The desired local desc
Static image action recognition, which aims to recognize action based on a single image, usually relies on expensive human labeling effort such as adequate labeled action images and large-scale labeled image dataset. In contrast, abundant unlabeled v
Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two-dimensional (2D) lip images to recognize speaker in a textdependent context.