ﻻ يوجد ملخص باللغة العربية
Phase masks have numerous applications in astronomical optics, in particular related to two themes: coronography for detection and analysis of extrasolar planets or circumstellar disks, and wavefront analysis for extremely precise adaptive optics systems or cophasing of segmented mirrors. I review some of the literature concerning phase masks and attempt to bridge the gap between two instrumental systems in which they are often found: the Mach-Zehnder interferometer and the coronograph.
We consider an oscillating micromirror replacing one of the two fixed mirrors of a Mach-Zehnder interferometer. In this ideal optical set-up the quantum oscillator is subjected to the radiation pressure interaction of travelling light waves, no cavit
A nonlinear phase shift is introduced to a Mach-Zehnder interferometer (MZI), and we present a scheme for enhancing the phase sensitivity. In our scheme, one input port of a standard MZI is injected with a coherent state and the other input port is i
The recent development of dynamic single-electron sources makes it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach-Zehnd
We develop a theoretical description of a Mach-Zehnder interferometer built from integer quantum Hall edge states, with an emphasis on how electron-electron interactions produce decoherence. We calculate the visibility of interference fringes and noi
We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from