ﻻ يوجد ملخص باللغة العربية
In this work we explore the sensitivity to the Higgs self-coupling $lambda$ in the production of two Higgs bosons via vector boson scattering at the LHC. Although these production channels, concretely $W^+W^- to HH$ and $ ZZ to HH$, have lower rates than gluon-gluon fusion, they benefit from being tree level processes, being independent of top physics and having very distinctive kinematics that allow to obtain very clean experimental signatures. This makes them competitive channels concerning the sensitivity to the Higgs self-coupling. In order to give predictions for the sensitivity to this coupling, we first study the role of $lambda$ at the subprocess level, both in and beyond the Standard Model, to move afterwards to the LHC scenario. We characterize the $ppto HHjj$ case first and then provide quantitative results for the values of $lambda$ that can be probed at the LHC in vector boson scattering processes after considering the Higgs boson decays. We focus mainly in $ppto bbar{b}bbar{b}jj$, since it has the largest signal rates, and also comment on the potential of other channels, such as $ppto bbar{b}gammagamma jj$, as they lead to cleaner, although smaller, signals. Our whole study is performed for a center of mass energy of $sqrt{s}=14$ TeV and for various future expected LHC luminosities.
The Compact Linear Collider (CLIC) is a future electron-positron collider that will allow measurement of the trilinear Higgs self-coupling in double Higgs boson events produced at its high-energy stages with collision energies of $sqrt{s}$ = 1.5 and
The experimental capability of recognizing the presence of b quarks in complex hadronic final states has addressed the attention towards final states with bbar{b} pairs for observing the production of the Higgs boson at the LHC, in the intermediate H
The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument beyond leading polynomial expansions of
The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon fusion production mode which
We set constraints on the trilinear Higgs boson self-coupling, $lambda_3$, by combining the information coming from the $W$ mass and leptonic effective Weinberg angle, electroweak precision observables, with the single Higgs boson analyses targeting