ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual suppression of a spin resonance mode with magnetic field in underdoped NaFe$_{1-x}$Co$_x$As: Evidence for orbital-selective pairing

259   0   0.0 ( 0 )
 نشر من قبل Yu Song
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use inelastic neutron scattering to study the fate of the two spin resonance modes in underdoped superconducting NaFe$_{1-x}$Co$_x$As ($x=0.0175$) under applied magnetic fields. While an applied in-plane magnetic field of $B=12$ T only modestly suppresses superconductivity and enhances static antiferromagnetic order, the two spin resonance modes display disparate responses. The spin resonance mode at higher energy is mildly suppressed, consistent with the field effect in other unconventional superconductors. The spin resonance mode at lower energy, on the other hand, is almost completely suppressed. Such dramatically different responses to applied magnetic field indicate distinct origins of the two spin resonance modes, resulting from the strongly orbital-selective nature of spin excitations and Cooper-pairing in iron-based superconductors.



قيم البحث

اقرأ أيضاً

We have performed $^{75}$As nuclear magnetic resonance (NMR) Knight shift measurements on single crystals of NaFe$_{0.975}$Co$_{0.025}$As to show that its superconductivity is a spin-paired, singlet state consistent with predictions of the weak-coupl ing BCS theory. We use a spectator nucleus, $^{23}$Na, uncoupled from the superconducting condensate, to determine the diamagnetic magnetization and to correct for its effect on the $^{75}$As NMR spectra. The resulting temperature dependence of the spin susceptibility follows the Yosida function as predicted by BCS for an isotropic, single-valued energy gap. Additionally, we have analyzed the $^{23}$Na spectra that become significantly broadened by vortices to obtain the superconducting penetration depth as a function of temperature with $lambda_{ab}(0) = 5,327 pm$ 78$,AA$.
266 - A. F. Wang , X. G. Luo , Y. J. Yan 2012
We measured the resistivity and magnetic susceptibility to map out the phase diagram of single crystalline NaFe$_{1-x}$Co$_x$As. Replacement of Fe by Co suppresses both the structural and magnetic transition, while enhances the superconducting transi tion temperature ($T_{rm c}$) and superconducting component fraction. Magnetic susceptibility exhibits temperature-linear dependence in the high temperatures up to 500 K for all the superconducting samples, but such behavior suddenly breaks down for the non-superconducting overdoped crystal, suggesting that the superconductivity is closely related to the T-linear dependence of susceptibility. Analysis on the superconducting-state specific heat for the optimally doped crystal provides strong evidence for a two-band s-wave order parameter with gap amplitudes of $Delta_1(0)/k_{rm B}T_{rm c}$= 1.78 and $Delta_2(0)/k_{rm B}T_{rm c}$=3.11, being consistent with the nodeless gap symmetry revealed by angle-resolved photoemission spectroscopy experiment.
225 - S. Y. Zhou , X. C. Hong , X. Qiu 2012
The thermal conductivity of optimally doped NaFe$_{0.972}$Co$_{0.028}$As ($T_c sim$ 20 K) and overdoped NaFe$_{0.925}$Co$_{0.075}$As ($T_c sim$ 11 K) single crystals were measured down to 50 mK. No residual linear term $kappa_0/T$ is found in zero ma gnetic field for both compounds, which is an evidence for nodeless superconducting gap. Applying field up to $H$ = 9 T ($approx H_{c2}/4$) does not noticeably increase $kappa_0/T$ in NaFe$_{1.972}$Co$_{0.028}$As, which is consistent with multiple isotropic gaps with similar magnitudes. The $kappa_0/T$ of overdoped NaFe$_{1.925}$Co$_{0.075}$As shows a relatively faster field dependence, indicating the increase of the ratio between the magnitudes of different gaps, or the enhancement of gap anisotropy upon increasing doping.
We use time-of-flight (ToF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe$_{1-x}$Co$_x$As with $x=0, 0.0175, 0.0215, 0.05,$ and $0.11$. The effect of elec tron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy ($Ele 80$ meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy ($E> 80$ meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility $chi^{primeprime}(omega)$ of NaFe$_{1-x}$Co$_x$As reveals a total fluctuating moment of 3.6 $mu_B^2$/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Co-overdoped nonsuperconducting NaFe$_{0.89}$Co$_{0.11}$As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe$_{2-x}$Ni$_x$As$_2$, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.
111 - Y.J. Um , Yunkyu Bang , B.H. Min 2014
We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtaine d on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا