ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensemble Properties of the White Dwarf Population of the Old, Solar Metallicity Open Star Cluster Messier 67

77   0   0.0 ( 0 )
 نشر من قبل Kurtis A. Williams
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White dwarfs are excellent forensic tools for studying end-of-life issues surrounding low- and intermediate-mass stars, and the old, solar-metallicity open star cluster Messier 67 is a proven laboratory for the study of stellar evolution for solar-type stars. In this paper, we present a detailed spectroscopic study of brighter (M_g < 12.4) white dwarfs in Messier 67, and, in combination with previously-published proper motion membership determinations, we identify a clean, representative sample of cluster white dwarfs, including 13 members with hydrogen-dominated atmospheres, at least one of which is a candidate double degenerate, and 5 members with helium-dominated atmospheres. Using this sample we test multiple predictions surrounding the final stages of stellar evolution in solar type stars. In particular, the stochasticity of the integrated mass lost by ~1.5 solar mass stars is less than 7% of the white dwarf remnant mass. We identify white dwarfs likely resulting from binary evolution, including at least one blue straggler remnant and two helium core white dwarfs. We observe no evidence of a significant population of helium core white dwarfs formed by enhanced mass loss on the red giant branch of the cluster. The distribution of white dwarf atmospheric compositions is fully consistent with that in the field, limiting proposed mechanisms for the suppression of helium atmosphere white dwarf formation in star clusters. In short, the white dwarf population of Messier 67 is fully consistent with basic predictions of single- and multiple-star stellar evolution theories for solar metallicity stars.



قيم البحث

اقرأ أيضاً

The old, solar metallicity open cluster Messier 67 has long been considered a lynchpin in the study and understanding of the structure and evolution of solar-type stars. The same is arguably true for stellar remnants - the white dwarf population of M 67 provides crucial observational data for understanding and interpreting white dwarf populations and evolution. In this work, we determine the white dwarf masses and derive their progenitor star masses using high signal-to-noise spectroscopy of warm ($gtrsim10,000$ K) DA white dwarfs in the cluster. From this we are able to derive each white dwarfs position on the initial-final mass relation, with an average $M_{mathrm WD} = 0.60pm 0.01 M_{odot}$ and progenitor mass $M_i = 1.52pm 0.04 M_{odot}$. These values are fully consistent with recently published linear and piecewise linear fits to the semi-empirical initial-final mass relation and provide a crucial, precise anchor point for the initial-final mass relation for solar-metallicity, low-mass stars. The mean mass of M67 white dwarfs is also consistent with the sharp narrow peak in the local field white dwarf mass distribution, indicating that a majority of recently-formed field white dwarfs come from stars with progenitor masses of $approx 1.5 M_{odot}$. Our results enable more precise modeling of the Galactic star formation rate encoded in the field WD mass distribution.
Blue Stragglers are stars located in an unexpected region of the color-magnitude diagram of a stellar population, as they appear bluer and more luminous than the stars in the turnoff region. They are ubiquitous, since they have been found among Milky Way field stars, in open and globular clusters, and also in other galaxies of the Local Group. Here we present a study on the blue straggler population of the old and metal-rich open cluster Collinder 261, based on Gaia DR2 data and on a multi-epoch radial velocity survey conducted with FLAMES@VLT. We also analyze the radial distribution of the blue straggler population to probe the dynamical status of the cluster. Blue straggler candidates were identified first with Gaia DR2, according to their position on the CMD, proper motions, and parallaxes. Their radial distribution was compared with those of the main sequence, red giant, and red clump stars, to evaluate mass segregation. Additionally, their radial velocities (and the associated uncertainties) were compared with the mean radial velocity and the velocity dispersion of the cluster. When possible, close binaries and long-period binaries were also identified, based on the radial velocity variations for the different epochs. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found 53 blue stragglers members of Collinder 261, six of them already identified in previous catalogs. Among the blue straggler candidates with radial velocity measurements, we found one long-period binary, five close-binary systems, three non-variable stars; we also identified one yellow straggler.
We present time-resolved spectroscopic and polarimetric observations of the AM Her system EU Cnc. EU Cnc is located near the core of the old open cluster Messier 67; new proper motion measurements indicate that EU Cnc is indeed a member of the star c luster, this system therefore is useful to constrain the formation and evolution of magnetic cataclysmic variables. The spectra exhibit two-component emission features with independent radial velocity variations as well as time-variable cyclotron emission indicating a magnetic field strength of 41 MG. The period of the radial velocity and cyclotron hump variations are consistent with the previously-known photometric period, and the spectroscopic flux variations are consistent in amplitude with previous photometric amplitude measurements. The secondary star is also detected in the spectrum. We also present polarimetric imaging measurements of EU Cnc that show a clear detection of polarization, and the degree of polarization drops below our detection threshold at phases when the cyclotron emission features are fading or not evident. The combined data are all consistent with the interpretation that EU Cnc is a low-state polar in the cluster Messier 67. The mass function of the system gives an estimate of the accretor mass of M_WD >= 0.68 M_sun with M_WD ~ 0.83 M_sun for an average inclination. We are thus able to place a lower limit on the progenitor mass of the accreting WD of >= 1.43 M_sun.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metalicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-IR energ y distribution of WD1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be $T_{rm eff}$=$15739^{+197}_{-196}$K and log $g$=$8.46^{+0.03}_{-0.02}$. We set tight limits on the mass of a putative cool companion, M$simgreat$0.036M$_{odot}$ (spatially unresolved) and M$simgreat$0.034M$_{odot}$, (spatially resolved and a$simless$2500AU). Based on the predictions of CO core, thick-H layer evolutionary models we determine the mass and cooling time of WD1216+260 to be M$_{rm WD}$=$0.90 pm0.04$M$_{odot}$ and $tau$$_{rm cool}$=$363^{+46}_{-41}$Myrs respectively. For an adopted cluster age of $tau$=500$pm$100Myrs we infer the mass of its progenitor star to be M$_{rm init}$=$4.77^{+5.37}_{-0.97}$M$_{odot}$. We briefly discuss this result in the context of the form of the stellar initial mass-final mass relation.
115 - L. R. Bedin 2009
We use 10 orbits of Advanced Camera for Surveys observations to reach the end of the white dwarf cooling sequence in the solar-metallicity open cluster NGC 2158. Our photometry and completeness tests show that the end falls at magnitude m_F606W = 27. 5 +/- 0.15, which implies an age between ~1.8 and ~2.0 Gyr, consistent with the age of 1.9 +/- 0.2 Gyr obtained from fits to the main-sequence turn-off. The faintest white dwarfs show a clear turn toward bluer colors, as predicted by theoretical isochrones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا