ﻻ يوجد ملخص باللغة العربية
We test the sensitivity of hydrodynamic and magnetohydrodynamic turbulent convection simulations with respect to Mach number, thermal and magnetic boundary conditions, and the centrifugal force. We find that varying the luminosity, which also controls the Mach number, has only a minor effect on the large-scale dynamics. A similar conclusion can also be drawn from the comparison of two formulations of the lower magnetic boundary condition with either vanishing electric field or current density. The centrifugal force has an effect on the solutions, but only if its magnitude with respect to acceleration due to gravity is by two orders of magnitude greater than in the Sun. Finally, we find that the parameterisation of the photospheric physics, either by an explicit cooling term or enhanced radiative diffusion, is more important than the thermal boundary condition. In particular, runs with cooling tend to lead to more anisotropic convection and stronger deviations from the Taylor-Proudman state. In summary, the fully compressible approach taken here with the Pencil Code is found to be valid, while still allowing the disparate timescales to be taken into account.
We report the finding of an azimuthal dynamo wave of a low-order (m=1) mode in direct numerical simulations (DNS) of turbulent convection in spherical shells. Such waves are predicted by mean field dynamo theory and have been obtained previously in m
(abidged) Context: Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims: We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusio
Context: We study the impact of two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from a one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone r
We have implemented open boundary conditions into the ANTARES code to increase the realism of our simulations of stellar surface convection. Even though we greatly benefit from the high accuracy of our fifth order numerical scheme (WENO5), the broade
We initiate the development of a horizon-based initial (or rather final) value formalism to describe the geometry and physics of the near-horizon spacetime: data specified on the horizon and a future ingoing null boundary determine the near-horizon g