ﻻ يوجد ملخص باللغة العربية
We demonstrate the possibility of probing for the first time the fully nonperturbative regime of quantum electrodynamics. By using tightly compressed and focused electron beams in a 100 GeV-class particle collider, beamstrahlung radiation losses can be mitigated, allowing the particles to experience extreme electromagnetic fields. Three-dimensional particle-in-cell simulations confirm the viability of this approach. The experimental forefront envisaged has the potential to establish a novel research field and to stimulate the development of a new theoretical methodology for this yet unexplored regime of strong-field quantum electrodynamics.
Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current u
QED cascades play an important role in extreme astrophysical environments like magnetars. They can also be produced by passing a relativistic electron beam through an intense laser field. Signatures of collective pair plasma effects in these QED casc
Here, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bi-chromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polariza
We propose a scheme to generate gamma-ray photons with an orbital angular momentum (OAM) and high energy simultaneously from laser-plasma interactions by irradiating a circularly polarized Laguerre-Gaussian laser on a thin plasma target. The spin ang
The vast majority of QED results are obtained in relatively weak fields and so in the framework of perturbation theory. However, forthcoming laser facilities providing extremely high fields can be used to enter not-yet-studied regimes. Here, a scheme