ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructing Bach Flat Manifolds of signature $(2,2)$ using the modified Riemannian extension

91   0   0.0 ( 0 )
 نشر من قبل Eduardo Garcia-Rio
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the modified Riemannian extension of an affine surface to construct Bach flat manifolds. As all these examples are VSI (vanishing scalar invariants), we shall construct scalar invariants which are not of Weyl type to distinguish them. We illustrate this phenomena in the context of homogeneous affine surfaces.



قيم البحث

اقرأ أيضاً

The goal of this article is to study the geometry of Bach-flat noncompact steady quasi-Einstein manifolds. We show that a Bach-flat noncompact steady quasi-Einstein manifold $(M^{n},,g)$ with positive Ricci curvature such that its potential function has at least one critical point must be a warped product with Einstein fiber. In addition, the fiber has constant curvature if $n = 4.$
We exhibit Walker manifolds of signature (2,2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine struct ure A, these properties are related to the Ricci tensor of A.
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and give necessary and sufficient conditions so that a modified Riemannian extension is Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3,3) whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four dimensional results in Osserman geometry.
179 - C. A. Morales , M. Vilches 2012
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate t o each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.
In this paper we describe the classification of all the geometric fibrations of a closed flat Riemannian 4-manifold over a 1-orbifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا