In this paper, a deep neural network based ensemble method is experimented for automatic identification of skin disease from dermoscopic images. The developed algorithm is applied on the task3 of the ISIC 2018 challenge dataset (Skin Lesion Analysis Towards Melanoma Detection).
Coronary calcium causes beam hardening and blooming artifacts on cardiac computed tomography angiography (CTA) images, which lead to overestimation of lumen stenosis and reduction of diagnostic specificity. To properly remove coronary calcification a
nd restore arterial lumen precisely, we propose a machine learning-based method with a multi-step inpainting process. We developed a new network configuration, Dense-Unet, to achieve optimal performance with low computational cost. Results after the calcium removal process were validated by comparing with gold-standard X-ray angiography. Our results demonstrated that removing coronary calcification from images with the proposed approach was feasible, and may potentially improve the diagnostic accuracy of CTA.
Gait as a biometric property for person identification plays a key role in video surveillance and security applications. In gait recognition, normally, gait feature such as Gait Energy Image (GEI) is extracted from one full gait cycle. However in man
y circumstances, such a full gait cycle might not be available due to occlusion. Thus, the GEI is not complete giving rise to a degrading in gait-based person identification rate. In this paper, we address this issue by proposing a novel method to identify individuals from gait feature when a few (or even single) frame(s) is available. To do so, we propose a deep learning-based approach to transform incomplete GEI to the corresponding complete GEI obtained from a full gait cycle. More precisely, this transformation is done gradually by training several auto encoders independently and then combining these as a uniform model. Experimental results on two public gait datasets, namely OULP and Casia-B demonstrate the validity of the proposed method in dealing with very incomplete gait cycles.
Image representations, from SIFT and bag of visual words to Convolutional Neural Networks (CNNs) are a crucial component of almost all computer vision systems. However, our understanding of them remains limited. In this paper we study several landmar
k representations, both shallow and deep, by a number of complementary visualization techniques. These visualizations are based on the concept of natural pre-image, namely a natural-looking image whose representation has some notable property. We study in particular three such visualizations: inversion, in which the aim is to reconstruct an image from its representation, activation maximization, in which we search for patterns that maximally stimulate a representation component, and caricaturization, in which the visual patterns that a representation detects in an image are exaggerated. We pose these as a regularized energy-minimization framework and demonstrate its generality and effectiveness. In particular, we show that this method can invert representations such as HOG more accurately than recent alternatives while being applicable to CNNs too. Among our findings, we show that several layers in CNNs retain photographically accurate information about the image, with different degrees of geometric and photometric invariance.
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con
tent and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical p
ractice. The purpose of this paper is to present an automatic proximal femur segmentation method that is based on deep convolutional neural networks (CNNs). This study had institutional review board approval and written informed consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal femur from 86 subject were manually-segmented by an expert. We performed experiments by training two different CNN architectures with multiple number of initial feature maps and layers, and tested their segmentation performance against the gold standard of manual segmentations using four-fold cross-validation. Automatic segmentation of the proximal femur achieved a high dice similarity score of 0.94$pm$0.05 with precision = 0.95$pm$0.02, and recall = 0.94$pm$0.08 using a CNN architecture based on 3D convolution exceeding the performance of 2D CNNs. The high segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI measurements of bone quality into clinical practice for management of osteoporosis.
Anabik Pal
,Sounak Ray
,Utpal Garain
.
(2018)
.
"Skin disease identification from dermoscopy images using deep convolutional neural network"
.
Anabik Pal Mr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا