ﻻ يوجد ملخص باللغة العربية
Inspired by one--dimensional light--particle systems, the dynamics of a non-Hamiltonian system with long--range forces is investigated. While the molecular dynamics does not reach an equilibrium state, it may be approximated in the thermodynamic limit by a Vlasov equation that does possess stable stationary solutions. This implies that on a macroscopic scale, the molecular dynamics evolves on a slow timescale that diverges with the system size. At the single-particle level, the evolution is driven by incoherent interaction between the particles, which may be effectively modeled by a noise, leading to a Brownian-like dynamics of the momentum. Because this self-generated diffusion process depends on the particle distribution, the associated Fokker-Planck equation is nonlinear, and a subdiffusive behavior of the momentum fluctuation emerges, in agreement with numerics.
Temperature inversion due to velocity filtration, a mechanism originally proposed to explain the heating of the solar corona, is demonstrated to occur also in a simple paradigmatic model with long-range interactions, the Hamiltonian mean-field model.
We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium st
We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a gen
We present an effective evolution equation for a coarse-grained distribution function of a long-range-interacting system preserving the symplectic structure of the non-collisional Boltzmann, or Vlasov, equation. We first derive a general form of such
We consider the Ising model on a small-world network, where the long-range interaction strength $J_2$ is in general different from the local interaction strength $J_1$, and examine its relaxation behaviors as well as phase transitions. As $J_2/J_1$ i