ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent Charge Density Wave Memory in a Cuprate Superconductor

92   0   0.0 ( 0 )
 نشر من قبل Mark Dean
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although charge density wave (CDW) correlations appear to be a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for coupling or pinning of the CDW to lattice deformations and disorder. While diffraction intensities can demonstrate the occurrence of CDW domain formation, the lack of scattering phase information has limited our understanding of this process. Here, we report coherent resonant x-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition results in equivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to temperatures well above that transition. That memory is only lost on cycling across the transition at 240(3) K that restores the four-fold symmetry of the copper-oxide planes. We infer that the structural-domain twinning pattern that develops below 240 K determines the CDW pinning landscape below 54 K. These results open a new view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.

قيم البحث

اقرأ أيضاً

Cuprate materials hosting high-temperature superconductivity (HTS) also exhibit various forms of charge and/or spin ordering whose significance is not fully understood. To date, static charge-density waves (CDWs) have been detected by diffraction pro bes only at special doping or in an applied external field. However, dynamic CDWs may also be present more broadly and their detection, characterization and relationship with HTS remain open problems. Here, we present a new method, based on ultrafast spectroscopy, to detect the presence and measure the lifetimes of CDW fluctuations in cuprates. In an underdoped La1.9Sr0.1CuO4 film (Tc = 26 K), we observe collective excitations of CDW that persist up to 100 K. This dynamic CDW fluctuates with a characteristic lifetime of 2 ps at T = 5 K which decreases to 0.5 ps at T = 100 K. In contrast, in an optimally doped La1.84Sr0.16CuO4 film (Tc = 38.5 K), we detect no signatures of fluctuating CDWs at any temperature, favoring the competition scenario. This work forges a path for studying fluctuating order parameters in various superconductors and other materials.
128 - C. C. Tam , M. Zhu , J. Ayres 2021
Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have a small Fermi surface pocket whereas when heavily overdoped, the pocket increases dramatically in size. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+x (Tl2201) displays CDW order with a remarkably long correlation length $xi approx 200$ r{A} which disappears above a hole concentration p_CDW ~ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below p_CDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates.
The normal state of cuprates is dominated by the strange metal phase that, near optimal doping, shows a linear temperature dependence of the resistivity persisting down to the lowest $T$, when superconductivity is suppressed. For underdoped cuprates this behavior is lost below the pseudogap temperature $T$*, where Charge Density Waves(CDW) together with other intertwined local orders characterize the ground state. Here we show that the $T$-linear resistivity of highly strained, ultrathin and underdoped YBa$_2$Cu$_3$O$_{7-delta}$ films is restored when the CDW amplitude, detected by Resonant Inelastic X-ray scattering, is suppressed. This observation points towards an intimate connection between the onset of CDW and the departure from $T$-linear resistivity in underdoped cuprates, a link that was missing until now. It also illustrates the potentiality of strain control to manipulate the ground state of quantum materials.
116 - A. F. Fang , X. B. Wang , P. Zheng 2014
Sr3Ir4Sn13 is an interesting compound showing a coexistence of structural phase transition and superconductivity. The structural phase transition at 147 K leads to the formation of a superlattice. We performed optical spectroscopy measurements across the structural phase transition on single crystal sample of Sr3Ir4Sn13. The optical spectroscopy study reveals an unusual temperature induced spectral weight transfer over broad energy scale, yielding evidence for the presence of electron correlation effect. Below the structural phase transition temperature an energy gap-like suppression in optical conductivity was observed, leading to the removal of partial itinerant carriers near Fermi level. Unexpectedly, the suppression appears at much higher energy scale than that expected for a usual charge density wave phase transition.
In cuprates, the strong correlations in proximity to the antiferromagnetic Mott insulating state give rise to an array of unconventional phenomena beyond high temperature superconductivity. Developing a complete description of the ground state evolut ion is crucial to decoding the complex phase diagram. Here we use the structure of broken translational symmetry, namely $d$-form factor charge modulations in (Bi,Pb)$_2$(Sr,La)$_2$CuO$_{6+delta}$, as a probe of the ground state reorganization that occurs at the transition from truncated Fermi arcs to a large Fermi surface. We use real space imaging of nanoscale electronic inhomogeneity as a tool to access a range of dopings within each sample, and we definitively validate the spectral gap $Delta$ as a proxy for local hole doping. From the $Delta$-dependence of the charge modulation wavevector, we discover a commensurate to incommensurate transition that is coincident with the Fermi surface transition from arcs to large hole pocket, demonstrating the qualitatively distinct nature of the electronic correlations governing the two sides of this quantum phase transition. Furthermore, the doping dependence of the incommensurate wavevector on the overdoped side is at odds with a simple Fermi surface driven instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا