ترغب بنشر مسار تعليمي؟ اضغط هنا

CaricatureShop: Personalized and Photorealistic Caricature Sketching

95   0   0.0 ( 0 )
 نشر من قبل Xiaoguang Han
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose the first sketching system for interactively personalized and photorealistic face caricaturing. Input an image of a human face, the users can create caricature photos by manipulating its facial feature curves. Our system firstly performs exaggeration on the recovered 3D face model according to the edited sketches, which is conducted by assigning the laplacian of each vertex a scaling factor. To construct the mapping between 2D sketches and a vertex-wise scaling field, a novel deep learning architecture is developed. With the obtained 3D caricature model, two images are generated, one obtained by applying 2D warping guided by the underlying 3D mesh deformation and the other obtained by re-rendering the deformed 3D textured model. These two images are then seamlessly integrated to produce our final output. Due to the severely stretching of meshes, the rendered texture is of blurry appearances. A deep learning approach is exploited to infer the missing details for enhancing these blurry regions. Moreover, a relighting operation is invented to further improve the photorealism of the result. Both quantitative and qualitative experiment results validated the efficiency of our sketching system and the superiority of our proposed techniques against existing methods.

قيم البحث

اقرأ أيضاً

We present a caricature generation framework based on shape and style manipulation using StyleGAN. Our framework, dubbed StyleCariGAN, automatically creates a realistic and detailed caricature from an input photo with optional controls on shape exagg eration degree and color stylization type. The key component of our method is shape exaggeration blocks that are used for modulating coarse layer feature maps of StyleGAN to produce desirable caricature shape exaggerations. We first build a layer-mixed StyleGAN for photo-to-caricature style conversion by swapping fine layers of the StyleGAN for photos to the corresponding layers of the StyleGAN trained to generate caricatures. Given an input photo, the layer-mixed model produces detailed color stylization for a caricature but without shape exaggerations. We then append shape exaggeration blocks to the coarse layers of the layer-mixed model and train the blocks to create shape exaggerations while preserving the characteristic appearances of the input. Experimental results show that our StyleCariGAN generates realistic and detailed caricatures compared to the current state-of-the-art methods. We demonstrate StyleCariGAN also supports other StyleGAN-based image manipulations, such as facial expression control.
Photorealistic editing of portraits is a challenging task as humans are very sensitive to inconsistencies in faces. We present an approach for high-quality intuitive editing of the camera viewpoint and scene illumination in a portrait image. This req uires our method to capture and control the full reflectance field of the person in the image. Most editing approaches rely on supervised learning using training data captured with setups such as light and camera stages. Such datasets are expensive to acquire, not readily available and do not capture all the rich variations of in-the-wild portrait images. In addition, most supervised approaches only focus on relighting, and do not allow camera viewpoint editing. Thus, they only capture and control a subset of the reflectance field. Recently, portrait editing has been demonstrated by operating in the generative model space of StyleGAN. While such approaches do not require direct supervision, there is a significant loss of quality when compared to the supervised approaches. In this paper, we present a method which learns from limited supervised training data. The training images only include people in a fixed neutral expression with eyes closed, without much hair or background variations. Each person is captured under 150 one-light-at-a-time conditions and under 8 camera poses. Instead of training directly in the image space, we design a supervised problem which learns transformations in the latent space of StyleGAN. This combines the best of supervised learning and generative adversarial modeling. We show that the StyleGAN prior allows for generalisation to different expressions, hairstyles and backgrounds. This produces high-quality photorealistic results for in-the-wild images and significantly outperforms existing methods. Our approach can edit the illumination and pose simultaneously, and runs at interactive rates.
Caricature is an artistic abstraction of the human face by distorting or exaggerating certain facial features, while still retains a likeness with the given face. Due to the large diversity of geometric and texture variations, automatic landmark dete ction and 3D face reconstruction for caricature is a challenging problem and has rarely been studied before. In this paper, we propose the first automatic method for this task by a novel 3D approach. To this end, we first build a dataset with various styles of 2D caricatures and their corresponding 3D shapes, and then build a parametric model on vertex based deformation space for 3D caricature face. Based on the constructed dataset and the nonlinear parametric model, we propose a neural network based method to regress the 3D face shape and orientation from the input 2D caricature image. Ablation studies and comparison with state-of-the-art methods demonstrate the effectiveness of our algorithm design. Extensive experimental results demonstrate that our method works well for various caricatures. Our constructed dataset, source code and trained model are available at https://github.com/Juyong/CaricatureFace.
We present a data-driven inference method that can synthesize a photorealistic texture map of a complete 3D face model given a partial 2D view of a person in the wild. After an initial estimation of shape and low-frequency albedo, we compute a high-f requency partial texture map, without the shading component, of the visible face area. To extract the fine appearance details from this incomplete input, we introduce a multi-scale detail analysis technique based on mid-layer feature correlations extracted from a deep convolutional neural network. We demonstrate that fitting a convex combination of feature correlations from a high-resolution face database can yield a semantically plausible facial detail description of the entire face. A complete and photorealistic texture map can then be synthesized by iteratively optimizing for the reconstructed feature correlations. Using these high-resolution textures and a commercial rendering framework, we can produce high-fidelity 3D renderings that are visually comparable to those obtained with state-of-the-art multi-view face capture systems. We demonstrate successful face reconstructions from a wide range of low resolution input images, including those of historical figures. In addition to extensive evaluations, we validate the realism of our results using a crowdsourced user study.
We present RealitySketch, an augmented reality interface for sketching interactive graphics and visualizations. In recent years, an increasing number of AR sketching tools enable users to draw and embed sketches in the real world. However, with the c urrent tools, sketched contents are inherently static, floating in mid air without responding to the real world. This paper introduces a new way to embed dynamic and responsive graphics in the real world. In RealitySketch, the user draws graphical elements on a mobile AR screen and binds them with physical objects in real-time and improvisational ways, so that the sketched elements dynamically move with the corresponding physical motion. The user can also quickly visualize and analyze real-world phenomena through responsive graph plots or interactive visualizations. This paper contributes to a set of interaction techniques that enable capturing, parameterizing, and visualizing real-world motion without pre-defined programs and configurations. Finally, we demonstrate our tool with several application scenarios, including physics education, sports training, and in-situ tangible interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا