ترغب بنشر مسار تعليمي؟ اضغط هنا

New fuzzy spheres through confining potentials and energy cutoffs

60   0   0.0 ( 0 )
 نشر من قبل Francesco Pisacane
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We briefly report our recent construction of new fuzzy spheres of dimensions d=1,2 covariant under the full orthogonal group O(D), D=d+1. They are built by imposing a suitable energy cutoff on a quantum particle in D dimensions subject to a confining potential well V(r) with a very sharp minimum on the sphere of radius r=1; furthermore, the cutoff and the depth of the well depend on (and diverge with) a natural number L. The commutator of the coordinates depends only on the angular momentum, as in Snyder noncommutative spaces. When L diverges, the Hilbert space dimension diverges, too; S^d_L converges to S^d, and we recover ordinary quantum mechanics on S^d. These models might be useful in quantum field theory, quantum gravity or condensed matter physics.



قيم البحث

اقرأ أيضاً

We construct various systems of coherent states (SCS) on the $O(D)$-equivariant fuzzy spheres $S^d_Lambda$ ($d=1,2$, $D=d!+!1$) constructed in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451] and study their localizations in configuration space as well as angular momentum space. These localizations are best expressed through the $O(D)$-invariant square space and angular momentum uncertainties $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$ in the ambient Euclidean space $mathbb{R}^D$. We also determine general bounds (e.g. uncertainty relations from commutation relations) for $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$, and partly investigate which SCS may saturate these bounds. In particular, we determine $O(D)$-equivariant systems of optimally localized coherent states, which are the closest quantum states to the classical states (i.e. points) of $S^d$. We compare the results with their analogs on commutative $S^d$. We also show that on $S^2_Lambda$ our optimally localized states are better localized than those on the Madore-Hoppe fuzzy sphere with the same cutoff $Lambda$.
We study the eigenvalue equation for the Cartesian coordinates observables $x_i$ on the fully $O(2)$-covariant fuzzy circle ${S^1_Lambda}_{Lambdainmathbb{N}}$ ($i=1,2$) and on the fully $O(3)$-covariant fuzzy 2-sphere ${S^2_Lambda}_{Lambdainmathbb{N} }$ ($i=1,2,3$) introduced in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451]. We show that the spectrum and eigenvectors of $x_i$ fulfill a number of properties which are expected for $x_i$ to approximate well the corresponding coordinate operator of a quantum particle forced to stay on the unit sphere.
The purpose of this paper is to establish meromorphy properties of the partial scattering amplitude T(lambda,k) associated with physically relevant classes N_{w,alpha}^gamma of nonlocal potentials in corresponding domains D_{gamma,alpha}^delta of the space C^2 of the complex angular momentum lambda and of the complex momentum k (namely, the square root of the energy). The general expression of T as a quotient Theta(lambda,k)/sigma(lambda,k) of two holomorphic functions in D_{gamma,alpha}^delta is obtained by using the Fredholm-Smithies theory for complex k, at first for lambda=l integer, and in a second step for lambda complex (Real(lambda)>-1/2). Finally, we justify the Watson resummation of the partial wave amplitudes in an angular sector of the lambda-plane in terms of the various components of the polar manifold of T with equation sigma(lambda,k)=0. While integrating the basic Regge notion of interpolation of resonances in the upper half-plane of lambda, this unified representation of the singularities of T also provides an attractive possible description of antiresonances in the lower half-plane of lambda. Such a possibility, which is forbidden in the usual theory of local potentials, represents an enriching alternative to the standard Breit-Wigner hard-sphere picture of antiresonances.
An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal di stances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the $su(2)$ algebra. This has been computed for both the discrete, as well as for the Perelemovs $SU(2)$ coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by $ninmathbb{Z}/2$.
Within the context of Supersymmetric Quantum Mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restrict ion of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy of quantum systems which should allow for its solution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of Supersymmetric Quantum Mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper these ideas are presented and solved explicitly for the cases N=1 and N=2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. At the same time new classes of integrable quantum potentials which generalise that of the harmonic oscillator and which are characterised by two arbitrary energy gaps are identified, for which a complete solution is achieved algebraically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا