ﻻ يوجد ملخص باللغة العربية
We present a systematic study of the magnetic proximity effect in Pt, depending on the magnetic moment and anisotropy of adjacent metallic ferromagnets. Element-selective x-ray resonant magnetic reflectivity measurements at the Pt absorption edge (11565$,$eV) are carried out to investigate the spin polarization of Pt in Pt/Co$_textrm{1-x}$Fe$_textrm{x}$ bilayers. We observe the largest magnetic moment of (0.72$,pm,$0.03)$, mu_textrm{B}$ per spin polarized Pt atom in Pt/Co$_textrm{33}$Fe$_textrm{67}$, following the Slater-Pauling curve of magnetic moments in Co-Fe alloys. In general, a clear linear dependence is observed between the Pt moment and the moment of the adjacent ferromagnet. Further, we study the magnetic anisotropy of the magnetized Pt which clearly adopts the magnetic anisotropy of the ferromagnet below. This is depicted for Pt on Fe(001) and on Co$_textrm{50}$Fe$_textrm{50}$(001), which have a 45$^{circ}$ relative rotation of the fourfold magnetocrystalline anisotropy.
We fabricated NiFe$_textrm{2}$O$_textrm{x}$ thin films on MgAl$_2$O$_4$(001) substrates by reactive dc magnetron co-sputtering varying the oxygen partial pressure during deposition. The fabrication of a variable material with oxygen deficiency leads
In this work we report the appearence of a large perpendicular magnetic anisotropy (PMA) in Fe$_{1-x}$Ga$_x$ thin films grown onto ZnSe/GaAs(100). This arising anisotropy is related to the tetragonal metastable phase in as-grown samples recently repo
We present x-ray resonant magnetic reflectivity (XRMR) as a very sensitive tool to detect proximity induced interface spin polarization in Pt/Fe, Pt/Ni$_{33}$Fe$_{67}$, Pt/Ni$_{81}$Fe$_{19}$ (permalloy), and Pt/Ni bilayers. We demonstrate that a deta
The strong perpendicular magnetic anisotropy of $L{rm1_0}$-ordered FePt has been the subject of extensive studies for a long time. However, it is not known which element, Fe or Pt, mainly contributes to the magnetic anisotropy energy (MAE). We have i
X-ray absorption spectroscopy was used to determine the valence state in La$_2$Co$_{1-x}$Mn$_{1+x}$O$_6$ ($xapprox 0.23$) thin films. We found that in spite of the non-stoichiometry, Co is in a divalent state while Mn ions show a mixed valence state.