ﻻ يوجد ملخص باللغة العربية
Understanding the relaxation process is the most important unsolved problem in non-equilibrium quantum physics. Current understanding primarily concerns on if and how an isolated quantum many-body system thermalize. However, there is no clear understanding of what conditions and on which time-scale do thermalization occurs. In this article, we simulate the quench dynamics of one-dimensional Bose gas in an optical lattice from an{it {ab initio}} perspective by solving the time-dependent many-boson Schrodinger equation using the multi-configurational time-dependent Hartree method for bosons (MCTDHB). We direct a superfluid (SF) to Mott-insulator (MI) transition by performing two independent quenches: an interaction quench when the interaction strength is changed instantaneously, and a lattice depth quench where the depth of the lattice is altered suddenly. We show that although the Bose-Hubbard model predicts identical physics, the general many-body treatment shows significant differences between the two cases. We observe that lattice depth quench exhibits a large time-scale to reach the MI state and shows an oscillatory phase collapse-revival dynamics and a complete absence of thermalization that reveals through the analysis of the time-evolution of the reduced one-body density matrix, two-body density, and entropy production. In contrast, the interaction quench shows a swift transition to the MI state and shows a clear signature of thermalization for strong quench values. We provide a physical explanation for these differences and prescribe an analytical fitting formula for the time required for thermalization.
Statistical mechanics is one of the most comprehensive theories in physics. From a boiling pot of water to the complex dynamics of quantum many-body systems it provides a successful connection between the microscopic dynamics of atoms and molecules a
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa
We create supercurrents in annular two-dimensional Bose gases through a temperature quench of the normal-to-superfluid phase transition. We detect the amplitude and the chirality of these supercurrents by measuring spiral patterns resulting from the
Using a species-selective dipole potential, we create initially localized impurities and investigate their interactions with a majority species of bosonic atoms in a one-dimensional configuration during expansion. We find an interaction-dependent amp
We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the