ترغب بنشر مسار تعليمي؟ اضغط هنا

Copper abundance from Cu I and Cu II lines in metal-poor star spectra: NLTE vs LTE

104   0   0.0 ( 0 )
 نشر من قبل Sergey Korotin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We checked consistency between the copper abundance derived in six metal-poor stars using UV Cu II lines (which are assumed to form in LTE) and UV Cu I lines (treated in NLTE). Our program stars cover the atmosphere parameters which are typical for intermediate temperature dwarfs (effective temperature is in the range from approximately 5800 to 6100 K, surface garvity is from 3.6 to 4.5, metallicity is from about -1 to -2.6 dex). We obtained a good agreement between abundance from these two sets of the lines, and this testifies about reliability of our NLTE copper atomic model. We confirmed that no underabundace of this element is seen at low metallicities (the mean [Cu/Fe] value is about -0.2 dex, while as it follows from the previous LTE studies copper behaves as a secondary element and [Cu/Fe] ratio in the range of [Fe/H from -2 to -3 dex should be about -1 dex). According to our NLTE data the copper behaves as a primary element at low metallicity regime. We also conclude that our new NLTE copper abundance in metal-poor stars requires significant reconsideration of this element yields in the explosive nucleosynthesis.



قيم البحث

اقرأ أيضاً

We report the detection of an Al II line at 2669.155 Angstroms in 11 metal-poor stars, using ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive Al abundances from this line using a standard abundance analysis, assuming local thermodynamic equilibrium (LTE). The mean [Al/Fe] ratio is -0.06 +/- 0.04 (sigma = 0.22) for these 11 stars spanning -3.9 < [Fe/H] < -1.3, or [Al/Fe] = -0.10 +/- 0.04 (sigma = 0.18) for 9 stars spanning -3.0 < [Fe/H] < -1.3 if two carbon-enhanced stars are excluded. We use these abundances to perform an empirical test of non-LTE (NLTE) abundance corrections predicted for resonance lines of Al I, including the commonly-used optical Al I line at 3961 Angstroms. The Al II line is formed in LTE, and the abundance derived from this line matches that derived from high-excitation Al I lines predicted to have minimal NLTE corrections. The differences between the abundance derived from the Al II line and the LTE abundance derived from Al I resonance lines are +0.4 to +0.9 dex, which match the predicted NLTE corrections for the Al I resonance lines. We conclude that the NLTE abundance calculations are approximately correct and should be applied to LTE abundances derived from Al I lines.
123 - Ian U. Roederer 2018
We present new abundances derived from Cu I, Cu II, Zn I, and Zn II lines in six warm (5766 < Teff < 6427 K), metal-poor (-2.50 < [Fe/H] < -0.95) dwarf and subgiant (3.64 < log g < 4.44) stars. These abundances are derived from archival high-resoluti on ultraviolet spectra from the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and ground-based optical spectra from several observatories. Ionized Cu and Zn are the majority species, and abundances derived from Cu II and Zn II lines should be largely insensitive to departures from local thermodynamic equilibrium (LTE). We find good agreement between the [Zn/H] ratios derived separately from Zn I and Zn II lines, suggesting that departures from LTE are, at most, minimal (< 0.1 dex). We find that the [Cu/H] ratios derived from Cu II lines are 0.36 +/- 0.06 dex larger than those derived from Cu I lines in the most metal-poor stars ([Fe/H] < -1.8), suggesting that LTE underestimates the Cu abundance derived from Cu I lines. The deviations decrease in more metal-rich stars. Our results validate previous theoretical non-LTE calculations for both Cu and Zn, supporting earlier conclusions that the enhancement of [Zn/Fe] in metal-poor stars is legitimate, and the deficiency of [Cu/Fe] in metal-poor stars may not be as large as previously thought.
118 - H.L. Yan , J.R. Shi , 2015
We investigated the copper abundances for $64$ late-type stars in the Galactic disk and halo with effective temperatures from $5400$ K to $6700$ K and [Fe/H] from $-1.88$ to $-0.17$. For the first time, the copper abundances are derived using both lo cal thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (non-LTE) calculations. High resolution ($R > 40,000$), high signal-to-noise ratio ($S/N > 100$) spectra from the FOCES spectrograph are used. The atmospheric models are calculated based on the MAFAGS opacity sampling code. All the abundances are derived using the spectrum synthesis methods. Our results indicate that the non-LTE effects of copper are important for metal-poor stars, showing a departure of $sim 0.17$ dex at the metallicity $sim -1.5$. We also find that the copper abundances derived from non-LTE calculations are enhanced compared with those from LTE. The enhancements show clear dependence on the metallicity, which gradually increase with decreasing [Fe/H] for our program stars, leading to a flatter distribution of [Cu/Fe] with [Fe/H] than previous work. There is a hint that the thick- and thin-disk stars have different behaviors in [Cu/Fe], and a bending for disk stars may exist.
146 - Monique Spite 2012
(Abridged) Extremely metal-poor stars contain the fossil records of the chemical composition of the early Galaxy. The NLTE profiles of the calcium lines were computed in a sample of 53 extremely metal-poor stars with a modified version of the program MULTI. With our new model atom we are able to reconcile the abundance of Ca deduced from the Ca I and Ca II lines in Procyon. -We find that [Ca/Fe] = 0.50 $pm$ 0.09 in the early Galaxy, a value slightly higher than the previous LTE estimations. -The scatter of the ratios [X/Ca] is generally smaller than the scatter of the ratio [X/Mg] where X is a light metal (O, Na, Mg, Al, S, and K) with the exception of Al. These scatters cannot be explained by error of measurements, except for oxygen. Surprisingly, the scatter of [X/Fe] is always equal to, or even smaller than, the scatter around the mean value of [X/Ca]. -We note that at low metallicity, the wavelength of the Ca I resonance line is shifted relative to the (weaker) subordinate lines, a signature of the effect of convection. -The Ca abundance deduced from the Ca I resonance line (422.7 nm) is found to be systematically smaller at very low metallicity, than the abundance deduced from the subordinate lines.
367 - J. R. Shi , H. L. Yan , Z. M. Zhou 2018
The copper abundances of 29 metal-poor stars are determined based on the high resolution, high signal-to-noise ratio spectra from the UVES spectragraph at the ESO VLT telescope. Our sample consists of the stars of the Galactic halo, thick- and thin-d isk with [Fe/H] ranging from ~ -3.2 to ~ 0.0 dex. The non-local thermodynamic equilibrium (NLTE) effects of Cu I lines are investigated, and line formation calculations are presented for an atomic model of copper including 97 terms and 1089 line transitions. We adopted the recently calculated photo-ionization cross-sections of Cu I, and investigated the hydrogen collision by comparing the theoretical and observed line profiles of our sample stars. The copper abundances are derived for both local thermodynamic equilibrium (LTE) and NLTE based on the spectrum synthesis methods. Our results show that the NLTE effects for Cu I lines are important for metal-poor stars, in particular for very metal-poor stars, and these effects depend on the metallicity. For very metal-poor stars, the NLTE abundance correction reaches as large as ~ +0.5 dex compared to standard LTE calculations. Our results indicate that [Cu/Fe] is under-abundant for metal-poor stars (~ -0.5 dex) when the NLTE effects are included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا