ترغب بنشر مسار تعليمي؟ اضغط هنا

Set Cover with Delay -- Clairvoyance is not Required

163   0   0.0 ( 0 )
 نشر من قبل Noam Touitou
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In most online problems with delay, clairvoyance (i.e. knowing the future delay of a request upon its arrival) is required for polylogarithmic competitiveness. In this paper, we show that this is not the case for set cover with delay (SCD) -- specifically, we present the first non-clairvoyant algorithm, which is $O(log n log m)$-competitive, where $n$ is the number of elements and $m$ is the number of sets. This matches the best known result for the classic online set cover (a special case of non-clairvoyant SCD). Moreover, clairvoyance does not allow for significant improvement - we present lower bounds of $Omega(sqrt{log n})$ and $Omega(sqrt{log m})$ for SCD which apply for the clairvoyant case. In addition, the competitiveness of our algorithm does not depend on the number of requests. Such a guarantee on the size of the universe alone was not previously known even for the clairvoyant case - the only previously-known algorithm (due to Carrasco et al.) is clairvoyant, with competitiveness that grows with the number of requests. For the special case of vertex cover with delay, we show a simpler, deterministic algorithm which is $3$-competitive (and also non-clairvoyant).

قيم البحث

اقرأ أيضاً

We study the classic set cover problem from the perspective of sub-linear algorithms. Given access to a collection of $m$ sets over $n$ elements in the query model, we show that sub-linear algorithms derived from existing techniques have almost tight query complexities. On one hand, first we show an adaptation of the streaming algorithm presented in Har-Peled et al. [2016] to the sub-linear query model, that returns an $alpha$-approximate cover using $tilde{O}(m(n/k)^{1/(alpha-1)} + nk)$ queries to the input, where $k$ denotes the value of a minimum set cover. We then complement this upper bound by proving that for lower values of $k$, the required number of queries is $tilde{Omega}(m(n/k)^{1/(2alpha)})$, even for estimating the optimal cover size. Moreover, we prove that even checking whether a given collection of sets covers all the elements would require $Omega(nk)$ queries. These two lower bounds provide strong evidence that the upper bound is almost tight for certain values of the parameter $k$. On the other hand, we show that this bound is not optimal for larger values of the parameter $k$, as there exists a $(1+varepsilon)$-approximation algorithm with $tilde{O}(mn/kvarepsilon^2)$ queries. We show that this bound is essentially tight for sufficiently small constant $varepsilon$, by establishing a lower bound of $tilde{Omega}(mn/k)$ query complexity.
Several algorithms with an approximation guarantee of $O(log n)$ are known for the Set Cover problem, where $n$ is the number of elements. We study a generalization of the Set Cover problem, called the Partition Set Cover problem. Here, the elements are partitioned into $r$ emph{color classes}, and we are required to cover at least $k_t$ elements from each color class $mathcal{C}_t$, using the minimum number of sets. We give a randomized LP-rounding algorithm that is an $O(beta + log r)$ approximation for the Partition Set Cover problem. Here $beta$ denotes the approximation guarantee for a related Set Cover instance obtained by rounding the standard LP. As a corollary, we obtain improved approximation guarantees for various set systems for which $beta$ is known to be sublogarithmic in $n$. We also extend the LP rounding algorithm to obtain $O(log r)$ approximations for similar generalizations of the Facility Location type problems. Finally, we show that many of these results are essentially tight, by showing that it is NP-hard to obtain an $o(log r)$-approximation for any of these problems.
We consider the online Min-Sum Set Cover (MSSC), a natural and intriguing generalization of the classical list update problem. In Online MSSC, the algorithm maintains a permutation on $n$ elements based on subsets $S_1, S_2, ldots$ arriving online. T he algorithm serves each set $S_t$ upon arrival, using its current permutation $pi_{t}$, incurring an access cost equal to the position of the first element of $S_t$ in $pi_{t}$. Then, the algorithm may update its permutation to $pi_{t+1}$, incurring a moving cost equal to the Kendall tau distance of $pi_{t}$ to $pi_{t+1}$. The objective is to minimize the total access and moving cost for serving the entire sequence. We consider the $r$-uniform version, where each $S_t$ has cardinality $r$. List update is the special case where $r = 1$. We obtain tight bounds on the competitive ratio of deterministic online algorithms for MSSC against a static adversary, that serves the entire sequence by a single permutation. First, we show a lower bound of $(r+1)(1-frac{r}{n+1})$ on the competitive ratio. Then, we consider several natural generalizations of successful list update algorithms and show that they fail to achieve any interesting competitive guarantee. On the positive side, we obtain a $O(r)$-competitive deterministic algorithm using ideas from online learning and the multiplicative weight updates (MWU) algorithm. Furthermore, we consider efficient algorithms. We propose a memoryless online algorithm, called Move-All-Equally, which is inspired by the Double Coverage algorithm for the $k$-server problem. We show that its competitive ratio is $Omega(r^2)$ and $2^{O(sqrt{log n cdot log r})}$, and conjecture that it is $f(r)$-competitive. We also compare Move-All-Equally against the dynamic optimal solution and obtain (almost) tight bounds by showing that it is $Omega(r sqrt{n})$ and $O(r^{3/2} sqrt{n})$-competitive.
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a hyperedge $e$ is considered covered by the first time when $k_e$ many of its vertices appear in the ordering. We give a $4.642$ approximation algorithm for GMSSC, coming close to the best possible bound of $4$, already for the classical special case (with all $k_e=1$) of min sum set cover (MSSC) studied by Feige, Lov{a}sz and Tetali, and improving upon the previous best known bound of $12.4$ due to Im, Sviridenko and van der Zwaan. Our algorithm is based on transforming the LP solution by a suitable kernel and applying randomized rounding. This also gives an LP-based $4$ approximation for MSSC. As part of the analysis of our algorithm, we also derive an inequality on the lower tail of a sum of independent Bernoulli random variables, which might be of independent interest and broader utility. Another well-known special case is the min sum vertex cover (MSVC) problem, in which the input hypergraph is a graph and $k_e = 1$, for every edge. We give a $16/9$ approximation for MSVC, and show a matching integrality gap for the natural LP relaxation. This improves upon the previous best $1.999946$ approximation of Barenholz, Feige and Peleg. (The claimed $1.79$ approximation result of Iwata, Tetali and Tripathi for the MSVC turned out have an unfortunate, seemingly unfixable, mistake in it.) Finally, we revisit MSSC and consider the $ell_p$ norm of cover-time of the hyperedges. Using a dual fitting argument, we show that the natural greedy algorithm achieves tight, up to NP-hardness, approximation guarantees of $(p+1)^{1+1/p}$, for all $pge 1$. For $p=1$, this gives yet another proof of the $4$ approximation for MSSC.
We present a deterministic dynamic algorithm for maintaining a $(1+epsilon)f$-approximate minimum cost set cover with $O(flog(Cn)/epsilon^2)$ amortized update time, when the input set system is undergoing element insertions and deletions. Here, $n$ d enotes the number of elements, each element appears in at most $f$ sets, and the cost of each set lies in the range $[1/C, 1]$. Our result, together with that of Gupta et al. [STOC`17], implies that there is a deterministic algorithm for this problem with $O(flog(Cn))$ amortized update time and $O(min(log n, f))$-approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only $O(log (Cn))$ away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was $O(f^2)$, which was due to Bhattacharya et al. [ICALP`15]. In contrast, the only result that guaranteed $O(f)$-approximation was obtained very recently by Abboud et al. [STOC`19], who designed a dynamic algorithm with $(1+epsilon)f$-approximation ratio and $O(f^2 log n/epsilon)$ amortized update time. Besides the extra $O(f)$ factor in the update time compared to our and Gupta et al.s results, the Abboud et al. algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا