ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for framed configuration spaces of points

120   0   0.0 ( 0 )
 نشر من قبل Ricardo Campos
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study configuration spaces of framed points on compact manifolds. Such configuration spaces admit natural actions of the framed little discs operads, that play an important role in the study of embedding spaces of manifolds and in factorization homology. We construct real combinatorial models for these operadic modules, for compact smooth manifolds without boundary.



قيم البحث

اقرأ أيضاً

It is known that the bimodule derived mapping spaces between two operads have a delooping in terms of the operadic mapping space. We show a relative version of that statement. The result has applications to the spaces of disc embeddings fixed near the boundary and framed disc embeddings.
We study the configuration spaces C(n;p,q) of n labeled hard squares in a p by q rectangle, a generalization of the well-known 15 Puzzle. Our main interest is in the topology of these spaces. Our first result is to describe a cubical cell complex and prove that is homotopy equivalent to the configuration space. We then focus on determining for which n, j, p, and q the homology group $H_j [ C(n;p,q) ]$ is nontrivial. We prove three homology-vanishing theorems, based on discrete Morse theory on the cell complex. Then we describe several explicit families of nontrivial cycles, and a method for interpolating between parameters to fill in most of the picture for large-scale nontrivial homology.
The equivariant cohomology of the classical configuration space $F(mathbb{R}^d,n)$ has been been of great interest and has been studied intensively starting with the classical papers by Artin (1925/1947) on the theory of braids, by Fox and Neuwirth ( 1962), Fadell and Neuwirth (1962), and Arnold (1969). We give a brief treatment of the subject from the beginnings to recent developments. However, we focus on the mod 2 equivariant cohomology algebras of the classical configuration space $F(mathbb{R}^d,n)$, as described in an influential paper by Hung (1990). We show with a new, detailed proof that his main result is correct, but that the arguments that were given by Hung on the way to his result are not, as are some of the intermediate results in his paper. This invalidates a paper by three of the present authors, Blagojevic, Luck & Ziegler (2016), who used a claimed intermediate result from Hung (1990) in order to derive lower bounds for the existence of $k$-regular and $ell$-skew embeddings. Using our new proof for Hungs main result, we get new lower bounds for existence of highly regular embeddings: Some of them agree with the previously claimed bounds, some are weaker.
211 - David A. Levin , Eric Ramos , 2020
We define and study a model of winding for non-colliding particles in finite trees. We prove that the asymptotic behavior of this statistic satisfies a central limiting theorem, analogous to similar results on winding of bounded particles in the plan e. We also propose certain natural open questions and conjectures, whose confirmation would provide new insights on configuration spaces of trees.
167 - Daniel A. Ramras 2015
We give a new description of Rosenthals generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا