ﻻ يوجد ملخص باللغة العربية
We first extend our formulation for the calculation of $pi$- and $sigma$-meson screening masses to the case of finite chemical potential $mu$. We then consider the imaginary-$mu$ approach, which is an extrapolation method from imaginary chemical potential ($mu=i mu_{rm I}$) to real one ($mu=mu_{rm R}$). The feasibility of the method is discussed based on the entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model in 2-flavor system. As an example, we investigate how reliable the imaginary-$mu$ approach is for $pi$- and $sigma$-meson screening masses, comparing screening masses at $mu_{rm R}$ in the method with those calculated directly at $mu_{rm R}$. We finally propose the new extrapolation method and confirm its efficiency.
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with the entanglement vertex. We propose a practical way of calculating meson screening masses in the NJL-type
We extract the imaginary part of the heavy-quark potential using classical-statistical simulations of real-time Yang-Mills dynamics in classical thermal equilibrium. The $r$-dependence of the imaginary part of the potential is extracted by measuring
Properties of QCD at finite imaginary chemical potential are revisited to utilize for the model building of QCD in low energy regimes. For example, the electric holonomy which is closely related to the Polyakov-loop drastically affects thermodynamic
The Polyakov loop extended Nambu--Jona-Lasinio (PNJL) model with imaginary chemical potential is studied. The model possesses the extended ${mathbb Z}_{3}$ symmetry that QCD does. Quantities invariant under the extended ${mathbb Z}_{3}$ symmetry, suc
We evaluate quark number densities at imaginary chemical potential by lattice QCD with clover-improved two-flavor Wilson fermion. The quark number densities are extrapolated to the small real chemical potential region by assuming some function forms.