ﻻ يوجد ملخص باللغة العربية
The spectra of empirical correlation matrices, constructed from multivariate data, are widely used in many areas of sciences, engineering and social sciences as a tool to understand the information contained in typically large datasets. In the last two decades, random matrix theory-based tools such as the nearest neighbour eigenvalue spacing and eigenvector distributions have been employed to extract the significant modes of variability present in such empirical correlations. In this work, we present an alternative analysis in terms of the recently introduced spacing ratios, which does not require the cumbersome unfolding process. It is shown that the higher order spacing ratio distributions for the Wishart ensemble of random matrices, characterized by the Dyson index $beta$, is related to the first order spacing ratio distribution with a modified value of co-dimension $beta$. This scaling is demonstrated for Wishart ensemble and also for the spectra of empirical correlation matrices drawn from the observed stock market and atmospheric pressure data. Using a combination of analytical and numerics, such scalings in spacing distributions are also discussed.
When dealing with non-stationary systems, for which many time series are available, it is common to divide time in epochs, i.e. smaller time intervals and deal with short time series in the hope to have some form of approximate stationarity on that t
We consider the empirical eigenvalue distribution of an $mtimes m$ principal submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. For $n$ and $m$ large with $frac{m}{n}=alpha$, the empirical spectral measure is well
Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known as highly relevant, in topics rang
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a w
We study the dependence of the spectral density of the covariance matrix ensemble on the power spectrum of the underlying multivariate signal. The white noise signal leads to the celebrated Marchenko-Pastur formula. We demonstrate results for some colored noise signals.