ﻻ يوجد ملخص باللغة العربية
The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with fractionalized anyons and emergent gauge structures in condensed matter physics. However, except for certain limits (for instance large number of flavors of matter fields), analytical methods can provide few concrete results. Here we show that the problem of compact $U(1)$ lattice gauge theory coupled to fermionic matter in $(2+1)$D is possible to access via sign-problem-free quantum Monte Carlo simulations. One can hence map out the phase diagram as a function of fermion flavors and the strength of gauge fluctuations. By increasing the coupling constant of the gauge field, gauge confinement in the form of various spontaneous symmetry breaking phases such as valence bond solid (VBS) and Neel antiferromagnet emerge. Deconfined phases with algebraic spin and VBS correlation functions are also observed. Such deconfined phases are an incarnation of exotic states of matter, $i.e.$ the algebraic spin liquid, which is generally viewed as the parent state of various quantum phases. The phase transitions between deconfined and confined phases, as well as that between the different confined phases provide various manifestations of deconfined quantum criticality. In particular, for four flavors, $N_f = 4$, our data suggests a continuous quantum phase transition between the VBS and N{e}el order. We also provide preliminary theoretical analysis for these quantum phase transitions.
Using first-principle Hybrid-Monte-Carlo (HMC) simulations, we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in the extended Hubbard model on the two dimensional hexagonal lattice a
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab-initio quantum Monte Carlo simulati
We consider the effect of the coupling between 2D quantum rotors near an XY ferromagnetic quantum critical point and spins of itinerant fermions. We analyze how this coupling affects the dynamics of rotors and the self-energy of fermions.A common bel
We present the first approximation free diagrammatic Monte Carlo study of a lattice polaron interacting with an acoustic phonon branch through the deformation potential. Weak and strong coupling regimes are separated by a self-trapping region where q
Elucidating the phase diagram of lattice gauge theories with fermionic matter in 2+1 dimensions has become a problem of considerable interest in recent years, motivated by physical problems ranging from chiral symmetry breaking in high-energy physics