ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding Minimum Volume Circumscribing Ellipsoids Using Generalized Copositive Programming

302   0   0.0 ( 0 )
 نشر من قبل Areesh Mittal
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of finding the Lowner-John ellipsoid, i.e., an ellipsoid with minimum volume that contains a given convex set. We reformulate the problem as a generalized copositive program, and use that reformulation to derive tractable semidefinite programming approximations for instances where the set is defined by affine and quadratic inequalities. We prove that, when the underlying set is a polytope, our method never provides an ellipsoid of higher volume than the one obtained by scaling the maximum volume inscribed ellipsoid. We empirically demonstrate that our proposed method generates high-quality solutions faster than solving the problem to optimality. Furthermore, we outperform the existing approximation schemes in terms of solution time and quality. We present applications of our method to obtain piecewise-linear decision rule approximations for dynamic distributionally robust problems with random recourse, and to generate ellipsoidal approximations for the set of reachable states in a linear dynamical system when the set of allowed controls is a polytope.



قيم البحث

اقرأ أيضاً

We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and cons ider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but amenable to copositive programming reformulations that give rise to tight conservative approximations. We further enhance these approximations through new piecewise decision rule schemes. Finally, we prove that our proposed approximations are tighter than the state-of-the-art schemes and demonstrate their superiority through numerical experiments.
This paper studies the polynomial basis that generates the smallest $n$-simplex enclosing a given $n^{text{th}}$-degree polynomial curve in $mathbb{R}^n$. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem , the simplexes obtained by these bases are not the smallest possible, which leads to overly conservative results in many CAD (computer-aided design) applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the $n^text{th}$-degree polynomial curve with largest convex hull enclosed in a given $n$-simplex. Then, we present a formulation that is independent of the $n$-simplex or $n^{text{th}}$-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any $ninmathbb{N}$, and prove (numerical) global optimality for $n=1,2,3$ and (numerical) local optimality for $n=4$. The results obtained for $n=3$ show that, for any given $3^{text{rd}}$-degree polynomial curve in $mathbb{R}^3$, the MINVO basis is able to obtain an enclosing simplex whose volume is $2.36$ and $254.9$ times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When $n=7$, these ratios increase to $902.7$ and $2.997cdot10^{21}$, respectively.
Combinatorial interaction testing is an efficient software testing strategy. If all interactions among test parameters or factors needed to be covered, the size of a required test suite would be prohibitively large. In contrast, this strategy only re quires covering $t$-wise interactions where $t$ is typically very small. As a result, it becomes possible to significantly reduce test suite size. Locating arrays aim to enhance the ability of combinatorial interaction testing. In particular, $(overline{1}, t)$-locating arrays can not only execute all $t$-way interactions but also identify, if any, which of the interactions causes a failure. In spite of this useful property, there is only limited research either on how to generate locating arrays or on their minimum sizes. In this paper, we propose an approach to generating minimum locating arrays. In the approach, the problem of finding a locating array consisting of $N$ tests is represented as a Constraint Satisfaction Problem (CSP) instance, which is in turn solved by a modern CSP solver. The results of using the proposed approach reveal many $(overline{1}, t)$-locating arrays that are smallest known so far. In addition, some of these arrays are proved to be minimum.
The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, rel axations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithms ability to generate strong dual bounds through extensive computational experiments.
Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactl y and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations is considered through a bit-complexity analysis. Yet in practice, implementations typically use limited-precision arithmetic. In this paper we introduce the idea of a limited-precision LP oracle and study how such an oracle could be used within a larger framework to compute exact precision solutions to LPs. Under mild assumptions, it is shown that a polynomial number of calls to such an oracle and a polynomial number of bit operations, is sufficient to compute an exact solution to an LP. This work provides a foundation for understanding and analyzing the behavior of the methods that are currently most effective in practice for solving LPs exactly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا