ترغب بنشر مسار تعليمي؟ اضغط هنا

Inter-Landau-level Andreev Reflection at the Dirac Point in a Graphene Quantum Hall State Coupled to a NbSe2 Superconductor

89   0   0.0 ( 0 )
 نشر من قبل Manas Ranjan Sahu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity and quantum Hall effect are distinct states of matter occurring in apparently incompatible physical conditions. Recent theoretical developments suggest that the coupling of quantum Hall effect with a superconductor can provide a fertile ground for realizing exotic topological excitations such as non-abelian Majorana fermions or Fibonacci particles. As a step toward that goal, we report observation of Andreev reflection at the junction of a quantum Hall edge state in a single layer graphene and a quasi-two dimensional niobium diselenide (NbSe2) superconductor. Our principal finding is the observation of an anomalous finite-temperature conductance peak located precisely at the Dirac point, providing a definitive evidence for inter-Landau level Andreev reflection in a quantum Hall system. Our observations are well supported by detailed numerical simulations, which offer additional insight into the role of the edge states in Andreev physics. This study paves the way for investigating analogous Andreev reflection in a fractional quantum Hall system coupled to a superconductor to realize exotic quasiparticles.



قيم البحث

اقرأ أيضاً

Despite extensive search for about a decade, specular Andreev reflection is only recently realized in bilayer graphene-superconductor interface. However, the evolution from the typical retro type Andreev reflection to the unique specular Andreev refl ection in single layer graphene has not yet been observed. We investigate this transition by measuring the differential conductance at the van der Walls interface of single layer graphene and NbSe2 superconductor. We find that the normalized conductance becomes suppressed as we pass through the Dirac cone via tuning the Fermi level and bias energy, which manifests the transition from retro to non-retro type Andreev reflection. The suppression indicates the blockage of Andreev reflection beyond a critical angle of the incident electron with respect to the normal between the single layer graphene and the superconductor junction. The results are compared with a theoretical model of the corresponding setup.
Using the non-equilibrium Green function method, we study the Andreev reflection in a Y-shaped graphene-superconductor device by tight-binding model. Considering both the zigzag and armchair terminals, we confirm that the zigzag terminals are the bet ter choice for detecting the Andreev reflection without no external field. Due to scattering from the boundaries of the finite-size centre region, the difference between Andreev retroreflection and specular reflection is hard to be distinguished. Although adjusting the size of the device makes the difference visible, to distinguish them quantitatively is still impossible through the transport conductance. The problem is circumvented when applying a perpendicular magnetic field on the centre region, which makes the incident electrons and the reflected holes propagate along the edge or the interface. In this case, the retroreflected and specular reflected holes from the different bands have opposite effective masses, therefore the moving direction of one is opposite to the other. Which external terminal the reflected holes flow into depends entirely on the kind of the Andreev reflection. Therefore, the specular Andreev reflection can be clearly distinguished from the retroreflected one in the presence of strong magnetic field, even for the device with finite size.
We report the observation of the resonant excitation of edge photocurrents in bilayer graphene subjected to terahertz radiation and a magnetic field. The resonantly excited edge photocurrent is observed for both inter-band (at low carrier densities) and intra-band (at high densities) transitions between Landau levels (LL). While the intra-band LL transitions can be traced to the classical cyclotron resonance (CR) and produce strong resonant features, the inter-band-LL resonances have quantum nature and lead to the weaker features in the measured photocurrent spectra. The magnitude and polarization properties of the observed features agree with the semiclassical theory of the intra-band edge photogalvanic effect, including its Shubnikov-de-Haas oscillations at low temperatures.
83 - Po Zhang , Hao Wu , Jun Chen 2021
We design and investigate an experimental system capable of entering an electron transport blockade regime in which a spin-triplet localized in the path of current is forbidden from entering a spin-singlet superconductor. To stabilize the triplet a d ouble quantum dot is created electrostatically near a superconducting lead in an InAs nanowire. The dots are filled stochastically with electrons of either spin. The superconducting lead is a molecular beam epitaxy grown Al shell. The shell is etched away over a wire segment to make room for the double dot and the normal metal gold lead. The quantum dot closest to the normal lead exhibits Coulomb diamonds, the dot closest to the superconducting lead exhibits Andreev bound states and an induced gap. The experimental observations compare favorably to a theoretical model of Andreev blockade, named so because the triplet double dot configuration suppresses Andreev reflections. Observed leakage currents can be accounted for by finite temperature. We observe the predicted quadruple level degeneracy points of high current and a periodic conductance pattern controlled by the occupation of the normal dot. Even-odd transport asymmetry is lifted with increased temperature and magnetic field. This blockade phenomenon can be used to study spin structure of superconductors. It may also find utility in quantum computing devices that utilize Andreev or Majorana states.
188 - P. Pandey , R. Kraft , R. Krupke 2019
We report the study of ballistic transport in normal metal/graphene/superconductor junctions in edge-contact geometry. While in the normal state, we have observed Fabry-P{e}rot resonances suggesting that charge carriers travel ballistically, the supe rconducting state shows that the Andreev reflection at the graphene/superconductor interface is affected by these interferences. Our experimental results in the superconducting state have been analyzed and explained with a modified Octavio-Tinkham-Blonder-Klapwijk model taking into account the magnetic pair-breaking effects and the two different interface transparencies, textit{i.e.},between the normal metal and graphene, and between graphene and the superconductor. We show that the transparency of the normal metal/graphene interface strongly varies with doping at large scale, while it undergoes weaker changes at the graphene/superconductor interface. When a cavity is formed by the charge transfer occurring in the vicinity of the contacts, we see that the transmission probabilities follow the normal state conductance highlighting the interplay between the Andreev processes and the electronic interferometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا