ﻻ يوجد ملخص باللغة العربية
We performed $^{77}$Se-NMR measurements on FeSe$_{1-x}$S$_x$, ($x$ = 0.12) up to 3.0 GPa at an applied magnetic field of 6.02 T, and found that the superconducting (SC) phase exhibits a remarkable double-dome structure in the pressure($P$)-temperature($T$) phase diagram which is hidden at 0 T. From the relaxation rate $1/T_1$ divided by $T$, $1/T_1T$, a Lifshitz transition may occur at 1.0 GPa, and the dominant nesting vector could change due to topological changes in Fermi surfaces. In other words, two types of antiferromagnetic (AFM) fluctuations would exist in the $P-T$ phase diagram. We conclude that the SC double domes in 12%-S doped FeSe consist of two SC states each of which correlates to a different type of AFM fluctuation. Furthermore, the strong AFM fluctuation at ambient pressure could originate from a possible hidden AFM quantum critical point.
The 12%-S doped FeSe system has a high Tc of 30 K at a pressure of 3.0 GPa. We have successfully investigated its microscopic properties for the first time via $^{77}$Se-NMR measurements under pressure. The antiferromagnetic (AFM) fluctuations at the
We present accurate electrical resistivity measurements along the two principle crystallographic axes of the pressure-induced heavy-fermion superconductor CeRhIn5 up to 5.63 GPa. For both directions, a valence crossover line is identified in the p-T
We report the evolution of the electronic nematic susceptibility in FeSe via Raman scattering as a function of hydrostatic pressure up to 5.8 GPa where the superconducting transition temperature $T_{c}$ reaches its maximum. The critical nematic fluct
We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1}
We report measurements of ac magnetic susceptibility $chi_{ac}$ and de Haas-van Alphen (dHvA) oscillations in KFe$_2$As$_2$ under high pressure up to 24.7 kbar. The pressure dependence of the superconducting transition temperature $T_c$ changes from