ﻻ يوجد ملخص باللغة العربية
The Dharma Planet Survey (DPS) aims to monitor about 150 nearby very bright FGKM dwarfs (within 50 pc) during 2016$-$2020 for low-mass planet detection and characterization using the TOU very high resolution optical spectrograph (R$approx$100,000, 380-900nm). TOU was initially mounted to the 2-m Automatic Spectroscopic Telescope at Fairborn Observatory in 2013-2015 to conduct a pilot survey, then moved to the dedicated 50-inch automatic telescope on Mt. Lemmon in 2016 to launch the survey. Here we report the first planet detection from DPS, a super-Earth candidate orbiting a bright K dwarf star, HD 26965. It is the second brightest star ($V=4.4$ mag) on the sky with a super-Earth candidate. The planet candidate has a mass of 8.47$pm0.47M_{rm Earth}$, period of $42.38pm0.01$ d, and eccentricity of $0.04^{+0.05}_{-0.03}$. This RV signal was independently detected by Diaz et al. (2018), but they could not confirm if the signal is from a planet or from stellar activity. The orbital period of the planet is close to the rotation period of the star (39$-$44.5 d) measured from stellar activity indicators. Our high precision photometric campaign and line bisector analysis of this star do not find any significant variations at the orbital period. Stellar RV jitters modeled from star spots and convection inhibition are also not strong enough to explain the RV signal detected. After further comparing RV data from the stars active magnetic phase and quiet magnetic phase, we conclude that the RV signal is due to planetary-reflex motion and not stellar activity.
The Doppler method of exoplanet detection has been extremely successful, but suffers from contaminating noise from stellar activity. In this work a model of a rotating star with a magnetic field based on the geometry of the K2 star Epsilon Eridani is
We report on the confirmation and mass determination of Pi Men c, the first transiting planet discovered by NASAs TESS space mission. Pi Men is a naked-eye (V=5.65 mag), quiet G0 V star that was previously known to host a sub-stellar companion (Pi Me
We report the discovery of a super-Jovian planet in the microlensing event KMT-2016-BLG-1836, which was found by the Korea Microlensing Telescope Networks high-cadence observations (Gamma ~ 4~{hr}^{-1}). The planet-host mass ratio q ~ 0.004. A Bayesi
We report on the serendipitous observations of Solar System objects imaged during the High cadence Transient Survey (HiTS) 2014 observation campaign. Data from this high cadence, wide field survey was originally analyzed for finding variable static s
The G-type star GJ504A is known to host a 3 to 35 MJup companion whose temperature, mass, and projected separation all contribute to make it a test case for the planet formation theories and for atmospheric models of giant planets and light brown dwa