ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational wave forest from string axiverse

187   0   0.0 ( 0 )
 نشر من قبل Naoya Kitajima
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axions predicted in string theory may have a scalar potential which has a much shallower potential region than the conventional cosine potential. We first show that axions which were located at such shallow potential regions generically undergo prominent resonance instabilities: the well-known narrow resonance and/or the flapping resonance, which has not been well investigated. We also study non-linear dynamics of axions caused by these resonance instabilities based on lattice simulation. We find that string axions in various mass ranges generate gravitational waves (GWs) with peaks at various frequencies determined by the mass scales, dubbed the GW forest. This may allow us to explore string axiverse through future multi-frequency GW observations. We also investigate GWs produced by the axion which accounts for present dark matter component.



قيم البحث

اقرأ أيضاً

We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac k reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
Gravitational waves (GWs) are one of the key signatures of cosmic strings. If GWs from cosmic strings are detected in future experiments, not only their existence can be confirmed but also their properties might be probed. In this paper, we study the determination of cosmic string parameters through direct detection of GW signatures in future ground-based GW experiments. We consider two types of GWs, bursts and the stochastic GW background, which provide us with different information about cosmic string properties. Performing the Fisher matrix calculation on the cosmic string parameters, such as parameters governing the string tension $Gmu$ and initial loop size $alpha$ and the reconnection probability $p$, we find that the two different types of GW can break degeneracies in some of these parameters and provide better constraints than those from each measurement.
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia nity of such stochastic gravitational waves background which receive two contributions, the first at formation time and the second due to propagation effects. The former contribution can be generated if the distribution of the curvature perturbation is characterized by a local and scale-invariant shape of non-Gaussianity. Under such an assumption, we conclude that a sizeable magnitude of anisotropy and non-Gaussianity in the gravitational waves would suggest that primordial black holes may not comply the totality of the dark matter.
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper ties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
The NANOGrav Collaboration recently reported a strong evidence for a stochastic common-spectrum process in the pulsar-timing data. We evaluate the evidence of interpreting this process as mergers of super massive black hole binaries and/or various st ochastic gravitational wave background sources in the early Universe, including first-order phase transitions, cosmic strings, domain walls, and large amplitude curvature perturbations. We discuss the implications of the constraints on these possible sources. It is found that the cosmic string is the most favored source against other gravitational wave sources based on the Bayes factor analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا