ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular gas filamentary structures in galaxy clusters

93   0   0.0 ( 0 )
 نشر من قبل Francoise Combes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francoise Combes




اسأل ChatGPT حول البحث

Recent molecular line observations with ALMA and NOEMA in several Brightest Cluster Galaxies (BCG) have revealed the large-scale filamentary structure at the center of cool core clusters. These filaments extend over 20-100kpc, they are tightly correlated with ionized gas (H$alpha$, [NII]) emission, and have characteristic shapes: either radial and straight, or also showing a U-turn, like a horse-shoe structure. The kinematics is quite regular and laminar, and the derived infall time is much longer than the free-fall time. The filaments extend up to the radius where the cooling time becomes larger than the infall time. Filaments can be perturbed by the sloshing of the BCG in its cluster, and spectacular cooling wakes have been observed. Filaments tend to occur at the border of cavities driven in the X-ray gas by the AGN radio jets. Observations of cool core clusters support the thermal instability scenario, which accounts for the multiphase medium in the upper atmospheres of BCG, where the right balance between heating and cooling is reached, and a chaotic cold gas accretion occurs. Molecular filaments are also seen associated to ram-pressure stripped spiral galaxies in rich galaxy clusters, and in jet-induced star formation, suggesting a very efficient molecular cloud formation even in hostile cluster environments.



قيم البحث

اقرأ أيضاً

Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with over-densities that are sometimes associated with infrared emission and active of star formation. To investigate the connection between filaments and star formation, requires an understanding of the processes that lead to the fragmentation of filaments and a determination of the physical properties of the over-densities (clumps). In this paper, we present a multi-wavelength study of five filamentary molecular clouds, containing several clumps in different evolutionary stages of star formation. We analyse the fragmentation of the filaments and derive the physical properties of their clumps. We find that the clumps in all filaments have a characteristic spacing consistent with the prediction of the `sausage instability theory, regardless of the complex morphology of the filaments or their evolutionary stage. We also find that most clumps have sufficient mass and density to form high-mass stars, supporting the idea that high-mass stars and clusters form within filaments.
We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mount ain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.
We identify 225 filaments from an H$_2$ column density map constructed using simultaneous $^{12}$CO, $^{13}$CO, and C$^{18}$O (J=1-0) observations carried out as a part of the MWISP project. We select 46 long filaments with lengths above 1.2 pc to an alyze the filament column density profiles. We divide the selected filaments into 397 segments and calculate the column density profiles for each segment. The symmetries of the profiles are investigated. The proportion of intrinsically asymmetrical segments is 65.3$%$, and that of intrinsically symmetrical ones is 21.4$%$. The typical full width at half maximum (FWHM) of the intrinsically symmetrical filament segments is $sim$ 0.67 pc with the Plummer-like fitting, and $sim$ 0.50 pc with the Gaussian fitting, respectively. The median FWHM widths derived from the second-moment method for intrinsically symmetrical and asymmetrical profiles are $sim$ 0.44 and 0.46 pc, respectively. Close association exists between the filamentary structures and the YSOs in the region.
The analysis of the presence of substructures in 16 well-sampled clusters of galaxies suggests a stimulating hypothesis: Clusters could be classified as unimodal or bimodal, on the basis of to the sub-clump distribution in the {em 3-D} space of posit ions and velocities. The dynamic study of these clusters shows that their fundamental characteristics, in particular the virial masses, are not severely biased by the presence of subclustering if the system considered is bound.
65 - Anne Klitsch 2021
Absorption-selected galaxies offer an effective way to study low-mass galaxies at high redshift. However, the physical properties of the underlying galaxy population remains uncertain. In particular, the multiphase circum-galactic medium is thought t o hold key information on gas flows into and out of galaxies that are vital for galaxy evolution models. Here we present ALMA observations of CO molecular gas in host galaxies of H_2-bearing absorbers. In our sample of six absorbers we detect molecular gas-rich galaxies in five absorber fields although we did not target high-metallicity (>50 per cent solar) systems for which previous studies reported the highest detection rate. Surprisingly, we find that the majority of the absorbers are associated with multiple galaxies rather than single haloes. Together with the large impact parameters these results suggest that the H_2-bearing gas seen in absorption is not part of an extended disk, but resides in dense gas pockets in the circum-galactic and intra-group medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا