ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Computing with Majorana Kramers Pairs

149   0   0.0 ( 0 )
 نشر من قبل Constantin Schrade
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a universal gate set acting on a qubit formed by the degenerate ground states of a Coulomb-blockaded time-reversal invariant topological superconductor island with spatially separated Majorana Kramers pairs: the Majorana Kramers Qubit. All gate operations are implemented by coupling the Majorana Kramers pairs to conventional superconducting leads. Interestingly, in such an all-superconducting device, the energy gap of the leads provides another layer of protection from quasiparticle poisoning independent of the island charging energy. Moreover, the absence of strong magnetic fields - which typically reduce the superconducting gap size of the island - suggests a unique robustness of our qubit to quasiparticle poisoning due to thermal excitations. Consequently, the Majorana Kramers Qubit should benefit from prolonged coherence times and may provide an alternative route to a Majorana-based quantum computer.



قيم البحث

اقرأ أيضاً

We study a time-reversal-invariant topological superconductor island hosting spatially separated Majorana Kramers pairs, with weak tunnel couplings to two s-wave superconducting leads. When the topological superconductor island is in the Coulomb bloc kade regime, we predict that a Josephson current flows between the two leads due to a non-local transfer of Cooper pairs mediated by the Majorana Kramers pairs. Interestingly, we find that the sign of the Josephson current is controlled by the joint parity of all four Majorana bound states on the island. Consequently, this parity-controlled Josephson effect can be used for qubit read-out in Majorana-based quantum computing.
Time-reversal invariant topological superconductors are characterized by the presence of Majorana Kramers pairs localized at defects. One of the transport signatures of Majorana Kramers pairs is the quantized differential conductance of $4e^2/h$ when such a one-dimensional superconductor is coupled to a normal-metal lead. The resonant Andreev reflection, responsible for this phenomenon, can be understood as the boundary condition change for lead electrons at low energies. In this paper, we study the stability of the Andreev reflection fixed point with respect to electron-electron interactions in the Luttinger liquid. We first calculate the phase diagram for the Luttinger liquid-Majorana Kramers pair junction and show that its low-energy properties are determined by Andreev reflection scattering processes in the spin-triplet channel, i.e. the corresponding Andreev boundary conditions are similar to that in a spin-triplet superconductor - normal lead junction. We also study here a quantum dot coupled to a normal lead and a Majorana Kramers pair and investigate the effect of local repulsive interactions leading to an interplay between Kondo and Majorana correlations. Using a combination of renormalization group analysis and slave-boson mean-field theory, we show that the system flows to a new fixed point which is controlled by the Majorana interaction rather than the Kondo coupling. This Majorana fixed point is characterized by correlations between the localized spin and the fermion parity of each spin sector of the topological superconductor. We investigate the stability of the Majorana phase with respect to Gaussian fluctuations.
We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum- dot experiments, including gate-control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current; (2) validation of a prototype topological qubit; and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the systems excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and readout schemes as well.
No experiment could directly test the particle/antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photo-assisted tunneling to fermionic reservoirs. The absence of direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be design ed. Whereas a light-hole spin qubit was introduced recently [Phys. Rev. Lett. 116, 246801 (2016)], here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time T2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا