ﻻ يوجد ملخص باللغة العربية
In a research context, image acquisition will often involve a pre-defined static protocol and the data will be of high quality. If we are to build applications that work in hospitals without significant operational changes in care delivery, algorithms should be designed to cope with the available data in the best possible way. In a clinical environment, imaging protocols are highly flexible, with MRI sequences commonly missing appropriate sequence labeling (e.g. T1, T2, FLAIR). To this end we introduce PIMMS, a Permutation Invariant Multi-Modal Segmentation technique that is able to perform inference over sets of MRI scans without using modality labels. We present results which show that our convolutional neural network can, in some settings, outperform a baseline model which utilizes modality labels, and achieve comparable performance otherwise.
The joint use of multiple imaging modalities for medical image segmentation has been widely studied in recent years. The fusion of information from different modalities has demonstrated to improve the segmentation accuracy, with respect to mono-modal
Multi-modal learning is typically performed with network architectures containing modality-specific layers and shared layers, utilizing co-registered images of different modalities. We propose a novel learning scheme for unpaired cross-modality image
Visual place recognition is one of the essential and challenging problems in the fields of robotics. In this letter, we for the first time explore the use of multi-modal fusion of semantic and visual modalities in dynamics-invariant space to improve
The findings of splenomegaly, abnormal enlargement of the spleen, is a non-invasive clinical biomarker for liver and spleen disease. Automated segmentation methods are essential to efficiently quantify splenomegaly from clinically acquired abdominal
Multi-modal magnetic resonance imaging (MRI) is essential in clinics for comprehensive diagnosis and surgical planning. Nevertheless, the segmentation of multi-modal MR images tends to be time-consuming and challenging. Convolutional neural network (