ﻻ يوجد ملخص باللغة العربية
The decay of a heavy neutral scalar particle into fermions and into charged scalars are analyzed when in the presence of an external magnetic field and finite temperature. Working in the one-loop approximation for the study of these decay channels, it is shown that the magnetic field leads in general to a suppression of the decay width whenever the kinematic constrain depends explicitly on the magnetic field. Our results are also compared with common approximations found in the literature, e.g., when the magnitude of the external magnetic field is smaller than the decaying product particle masses, i.e., in the weak field approximation, and in the opposite case, i.e., in the strong field approximation. Possible applications of our results are discussed.
In this work, we investigate not only the pole masses but also the screening masses of neutral pions at finite temperature and magnetic field by utilizing the random phase approximation (RPA) approach in the framework of the two-flavor Nambu--Jona-La
We study the possibility of discovering neutral scalar Higgs bosons in the $U(1)$-extended supersymmetric standard model (USSM) at the CERN Large Hadron Collider (LHC), by examining their productions via the exotic quark loop in the gluon fusion proc
We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damp
In this study we consider an effective model by introducing two hypothetical real scalars, $H$ and $chi$ - a dark matter candidate, where the masses of these scalars are $2 m_h < m_H < 2 m_t$ and $m_chi approx m_h/2$ with $m_h$ and $m_t$ being the St
The one loop self energy of the neutral $rho$ meson is obtained for the effective $rhopipi$ and $rho NN$ interaction at finite temperature and density in the presence of a constant background magnetic field of arbitrary strength. In our approach, the