ﻻ يوجد ملخص باللغة العربية
This study presents a new formulation for the norms and scalar products used in tangent linear or adjoint models to determine forecast errors and sensitivity to observations and to calculate singular vectors. The new norm is derived from the concept of moist-air available enthalpy, which is one of the availability functions referred to as exergy in general thermodynamics. It is shown that the sum of the kinetic energy and the moist-air available enthalpy can be used to define a new moist-air squared norm which is quadratic in: 1) wind components; 2) temperature; 3) surface pressure; and 4) water vapor content. Preliminary numerical applications are performed to show that the new weighting factors for temperature and water vapor are significantly different from those used in observation impact studies, and are in better agreement with observed analysis increments. These numerical applications confirm that the weighting factors for water vapor and temperature exhibit a large increase with height (by several orders of magnitude) and a minimum in the middle troposphere, respectively.
The exergy of the dry atmosphere can be considered as another aspect of the meteorological theories of available energies. The local and global properties of the dry available enthalpy function, also called flow exergy, were investigated in a previou
Calculations of entropy fluxes and production rate have been evaluated with some success to study atmospheric processes. However, recurring questions arise as to how best to take into account entropy flux due to radiation, for example. This article r
It is important to be able to calculate the moist-air entropy of the atmosphere with precision. A potential temperature has already been defined from the third law of thermodynamics for this purpose. However, a doubt remains as to whether this entrop
A framework is introduced to compare moist `potential temperatures. The equivalent potential temperature, $theta_e,$ the liquid water potential temperature, $theta_ell,$ and the entropy potential temperature, $theta_s$ are all shown to be potential t
Raylaigh-Benard convection is one of the most well-studied models in fluid mechanics. Atmospheric convection, one of the most important components of the climate system, is by comparison complicated and poorly understood. A key attribute of atmospher