ﻻ يوجد ملخص باللغة العربية
We present a positive and asymptotic preserving numerical scheme for solving linear kinetic, transport equations that relax to a diffusive equation in the limit of infinite scattering. The proposed scheme is developed using a standard spectral angular discretization and a classical micro-macro decomposition. The three main ingredients are a semi-implicit temporal discretization, a dedicated finite difference spatial discretization, and realizability limiters in the angular discretization. Under mild assumptions on the initial condition and time step, the scheme becomes a consistent numerical discretization for the limiting diffusion equation when the scattering cross-section tends to infinity. The scheme also preserves positivity of the particle concentration on the space-time mesh and therefore fixes a common defect of spectral angular discretizations. The scheme is tested on the well-known line source benchmark problem with the usual uniform material medium as well as a medium composed from different materials that are arranged in a checkerboard pattern. We also report the observed order of space-time accuracy of the proposed scheme.
We consider the simulation of barotropic flow of gas in long pipes and pipe networks. Based on a Hamiltonian reformulation of the governing system, a fully discrete approximation scheme is proposed using mixed finite elements in space and an implicit
In this paper, we first extend the micro-macro decomposition method for multiscale kinetic equations from the BGK model to general collisional kinetic equations, including the Boltzmann and the Fokker-Planck Landau equations. The main idea is to use
The design and analysis of a unified asymptotic preserving (AP) and well-balanced scheme for the Euler Equations with gravitational and frictional source terms is presented in this paper. The asymptotic behaviour of the Euler system in the limit of z
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stabili
The radiation magnetohydrodynamics (RMHD) system couples the ideal magnetohydrodynamics equations with a gray radiation transfer equation. The main challenge is that the radiation travels at the speed of light while the magnetohydrodynamics changes w