ترغب بنشر مسار تعليمي؟ اضغط هنا

The VIMOS Public Extragalactic Redshift Survey (VIPERS): Unbiased clustering estimate with VIPERS slit assignment

113   0   0.0 ( 0 )
 نشر من قبل Faizan Gohar Mohammad
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The VIPERS galaxy survey has measured the clustering of $0.5<z<1.2$ galaxies, enabling a number of measurements of galaxy properties and cosmological redshift-space distortions (RSD). Because the measurements were made using one-pass of the VIMOS instrument on the Very Large Telescope (VLT), the galaxies observed only represent approximately 47% of the parent target sample, with a distribution imprinted with the pattern of the VIMOS slitmask. Correcting for the effect on clustering has previously been achieved using an approximate approach developed using mock catalogues. Pairwise inverse probability (PIP) weighting has recently been proposed by Bianchi & Percival to correct for missing galaxies, and we apply it to mock VIPERS catalogues to show that it accurately corrects the clustering for the VIMOS effects, matching the clustering measured from the observed sample to that of the parent. We then apply PIP-weighting to the VIPERS data, and fit the resulting monopole and quadrupole moments of the galaxy two-point correlation function with respect to the line-of-sight, making measurements of RSD. The results are close to previous measurements, showing that the previous approximate methods used by the VIPERS team are sufficient given the errors obtained on the RSD parameter.



قيم البحث

اقرأ أيضاً

202 - A. Cappi , F. Marulli , J. Bel 2015
We investigate the higher-order correlation properties of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to test the hierarchical scaling hypothesis at z~1 and the dependence on galaxy luminosity, stellar mass, and redshift. We also aim to a ssess deviations from the linearity of galaxy bias independently from a previously performed analysis of our survey (Di Porto et al. 2014). We have measured the count probability distribution function in cells of radii 3 < R < 10 Mpc/h, deriving $sigma_{8g}$, the volume-averaged two-,three-,and four-point correlation functions and the normalized skewness $S_{3g}$ and kurtosis $S_{4g}$ for volume-limited subsamples covering the ranges $-19.5 le M_B(z=1.1)-5log(h) le -21.0$, $9.0 < log(M*/M_{odot} h^{-2}) le 11.0$, $0.5 le z < 1.1$. We have thus performed the first measurement of high-order correlations at z~1 in a spectroscopic redshift survey. Our main results are the following. 1) The hierarchical scaling holds throughout the whole range of scale and z. 2) We do not find a significant dependence of $S_{3g}$ on luminosity (below z=0.9 $S_{3g}$ decreases with luminosity but only at 1{sigma}-level). 3) We do not detect a significant dependence of $S_{3g}$ and $S_{4g}$ on scale, except beyond z~0.9, where the dependence can be explained as a consequence of sample variance. 4) We do not detect an evolution of $S_{3g}$ and $S_{4g}$ with z. 5) The linear bias factor $b=sigma_{8g}/sigma_{8m}$ increases with z, in agreement with previous results. 6) We quantify deviations from the linear bias by means of the Taylor expansion parameter $b_2$. Our results are compatible with a null non-linear bias term, but taking into account other available data we argue that there is evidence for a small non-linear bias term.
Aims. Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the key parameters that describe the galaxy density field and its spatial correlations in redshift space. Methods. We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results. We present joint constraints on the anisotropic power spectrum as well as the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although these are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate $fsigma_8 = 0.38$ with 18% uncertainty at redshift 0.7.
Using an unconventional single line diagnostic that unambiguously identifies AGNs in composite galaxies we report statistical differences in the properties (stellar age, [OII] luminosity, colour) between active and inactive galaxies at 0.62<z<1.2 ext racted from the VIMOS Public Extragalactic Redshift Survey (VIPERS). The nuclear activity is probed by the high-ionization [NeV] emission line and along with their parent samples, the galaxies are properly selected according to their stellar mass, redshift, and colour distributions. We report younger underlying stellar ages and higher [OII] luminosities of active galaxies in the green valley and in the blue cloud compared to control samples. We observe higher fractions of green galaxies hosting AGN activity at progressively bluer (r-K) colours. Depending on the location of the host galaxy in the NUVrK colour diagram we find higher AGN fractions in massive blue galaxies and in the least massive red galaxies, in agreement with the picture that black holes vary their properties when hosted in either star-forming or passive galaxies. Exactly where the fast quenching processes are expected to play a role, we identify a novel class of active galaxies in the blue cloud with signatures typical for a suddenly suppression of their star formation activity after a burst happening in the recent past. Their optical spectra resemble those of post-starburst galaxies, that would never be identified in a spectroscopic search using classical selection techniques. Broadly, these active galaxies selected on the [NeV] line are not commonly represented in shallow X-ray, mid-IR, or classical line diagnostics. If we consider that our results are limited by the shallow observational limits and rapid AGN variability, the impact of AGN feedback on galaxy formation and evolution may represent an important channel of fast-transiting galaxies moving to the red sequence.
We use the VIPERS final data release to investigate the performance of colour-selected populations of galaxies as tracers of linear large-scale motions. We empirically select volume-limited samples of blue and red galaxies as to minimise the systemat ic error on the estimate of the growth rate $fsigma_8$ from the anisotropy of the two-point correlation function. To this end, rather than rigidly splitting the sample into two colour classes we define the red/blue fractional contribution of each object through a weight based on the $(U-V)$ colour distribution. Using mock surveys that are designed to reproduce the observed properties of VIPERS galaxies, we find the systematic error in recovering the fiducial value of $fsigma_8$ to be minimized when using a volume-limited sample of luminous blue galaxies. We model non-linear corrections via the Scoccimarro extension of the Kaiser model, finding systematic errors on $fsigma_8$ of below $1-2%$, using scales as small as 5 $h^{-1}mathrm{Mpc}$. We interpret this result as indicating that selection of luminous blue galaxies maximises the fraction that are central objects in their dark matter haloes; this in turn minimises the contribution to the measured $xi(r_p,pi)$ from the 1-halo term, which is dominated by non-linear motions. The gain is inferior if one uses the full magnitude-limited sample of blue objects, consistent with the presence of a significant fraction of blue, fainter satellites dominated by non-streaming, orbital velocities. We measure a value of $fsigma_8=0.45 pm 0.11$ over the single redshift range $0.6le zle 1.0$, corresponding to an effective redshift for the blue galaxies $left<zright>=0.85$. Including in the likelihood the potential extra information contained in the blue-red galaxy cross-correlation function does not lead to an appreciable improvement in the error bars, while it increases the systematic error.
We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5<z<1.1, using the first ~55000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). We measured the redshift-space two-point correlation functions (2PCF), and the projected correlation function, in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes -21.6<MB-5log(h)<-19.5 and median stellar masses 9.8<log(M*[Msun/h^2])<10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2<r_p[Mpc/h]<20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat LCDM model to derive the dark matter 2PCF. We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF -- the correlation length and the slope -- as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5<z<1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z=0.5 and z=1.1 for a broad range of luminosities and stellar masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا