ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hilbert space approach to difference equations

88   0   0.0 ( 0 )
 نشر من قبل Konrad Kitzing
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider general difference equations $u_{n+1} = F(u)_n$ for $n in mathbb{Z}$ on exponentially weighted $ell_2$ spaces of two-sided Hilbert space valued sequences $u$ and discuss initial value problems. As an application of the Hilbert space approach, we characterize exponential stability of linear equations and prove a stable manifold theorem for causal nonlinear difference equations.



قيم البحث

اقرأ أيضاً

We formulate fractional difference equations of Riemann-Liouville and Caputo type in a functional analytical framework. Main results are existence of solutions on Hilbert space-valued weighted sequence spaces and a condition for stability of linear f ractional difference equations. Using a functional calculus, we relate the fractional sum to fractional powers of the operator $1 - tau^{-1}$ with the right shift $tau^{-1}$ on weighted sequence spaces. Causality of the solution operator plays a crucial role for the description of initial value problems.
We study fractional differential equations of Riemann-Liouville and Caputo type in Hilbert spaces. Using exponentially weighted spaces of functions defined on $mathbb{R}$, we define fractional operators by means of a functional calculus using the Fou rier transform. Main tools are extrapolation- and interpolation spaces. Main results are the existence and uniqueness of solutions and the causality of solution operators for non-linear fractional differential equations.
We seek solutions $uinR^n$ to the semilinear elliptic partial difference equation $-Lu + f_s(u) = 0$, where $L$ is the matrix corresponding to the Laplacian operator on a graph $G$ and $f_s$ is a one-parameter family of nonlinear functions. This arti cle combines the ideas introduced by the authors in two papers: a) {it Nonlinear Elliptic Partial Difference Equations on Graphs} (J. Experimental Mathematics, 2006), which introduces analytical and numerical techniques for solving such equations, and b) {it Symmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region} wherein we present some of our recent advances concerning symmetry, bifurcation, and automation fo We apply the symmetry analysis found in the SIAM paper to arbitrary graphs in order to obtain better initial guesses for Newtons method, create informative graphics, and be in the underlying variational structure. We use two modified implementations of the gradient Newton-Galerkin algorithm (GNGA, Neuberger and Swift) to follow bifurcation branches in a robust way. By handling difficulties that arise when encountering accidental degeneracies and higher-dimension we can find many solutions of many symmetry types to the discrete nonlinear system. We present a selection of experimental results which demonstrate our algorithms capability to automatically generate bifurcation diagrams and solution graphics starting with only an edgelis of a graph. We highlight interesting symmetry and variational phenomena.
In this paper, we study slow manifolds for infinite-dimensional evolution equations. We compare two approaches: an abstract evolution equation framework and a finite-dimensional spectral Galerkin approximation. We prove that the slow manifolds constr ucted within each approach are asymptotically close under suitable conditions. The proof is based upon Lyapunov-Perron methods and a comparison of the local graphs for the slow manifolds in scales of Banach spaces. In summary, our main result allows us to change between different characterizations of slow invariant manifolds, depending upon the technical challenges posed by particular fast-slow systems.
For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. Moreover, we introduce the notion of weak kinematical similarity and prove a reducibility result by the spectral theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا