ﻻ يوجد ملخص باللغة العربية
A microscopic calculation and symmetry argument reveal superconductivity in the vicinity of parity-violating magnetic order. An augmented cluster magnetic multipole order in a crystal lacking local space inversion parity may break global inversion symmetry, and then, it is classified into an odd-parity multipole order. We investigate unconventional superconductivity induced by an odd-parity magnetic multipole fluctuation in a two-dimensional two-sublattice Hubbard model motivated by Sr$_2$IrO$_4$. We find that even-parity superconductivity is more significantly suppressed by a spin-orbit coupling than that in a globally noncentrosymmetric system. Consequently, two odd-parity superconducting states are stabilized by magnetic multipole fluctuations in a large spin-orbit coupling region. Both of them are identified as $Z_2$ topological superconducting states. The obtained gap function of inter-sublattice pairing shows a gapped/nodal structure protected by nonsymmorphic symmetry. Our finding implies a new family of odd-parity topological superconductors. Candidate materials are discussed.
Recent discovery of superconductivity in CeRh$_2$As$_2$ clarified an unusual $H$-$T$ phase diagram with two superconducting phases [Khim et al. arXiv:2101.09522]. The experimental observation has been interpreted based on the even-odd parity transiti
We report the synthesis, electronic properties, and electronic structure of ullmannite-type PtSbS, which has a cubic crystal structure without space inversion symmetry. Electrical resistivity and magnetization measured at low temperatures suggested t
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently,
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation.