ترغب بنشر مسار تعليمي؟ اضغط هنا

Odd-parity multipole fluctuation and unconventional superconductivity in locally noncentrosymmetric crystal

81   0   0.0 ( 0 )
 نشر من قبل Jun Ishizuka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A microscopic calculation and symmetry argument reveal superconductivity in the vicinity of parity-violating magnetic order. An augmented cluster magnetic multipole order in a crystal lacking local space inversion parity may break global inversion symmetry, and then, it is classified into an odd-parity multipole order. We investigate unconventional superconductivity induced by an odd-parity magnetic multipole fluctuation in a two-dimensional two-sublattice Hubbard model motivated by Sr$_2$IrO$_4$. We find that even-parity superconductivity is more significantly suppressed by a spin-orbit coupling than that in a globally noncentrosymmetric system. Consequently, two odd-parity superconducting states are stabilized by magnetic multipole fluctuations in a large spin-orbit coupling region. Both of them are identified as $Z_2$ topological superconducting states. The obtained gap function of inter-sublattice pairing shows a gapped/nodal structure protected by nonsymmorphic symmetry. Our finding implies a new family of odd-parity topological superconductors. Candidate materials are discussed.


قيم البحث

اقرأ أيضاً

Recent discovery of superconductivity in CeRh$_2$As$_2$ clarified an unusual $H$-$T$ phase diagram with two superconducting phases [Khim et al. arXiv:2101.09522]. The experimental observation has been interpreted based on the even-odd parity transiti on characteristic of locally noncentrosymmetric superconductors. Indeed, the inversion symmetry is locally broken at the Ce site, and CeRh$_2$As$_2$ molds a new class of exotic superconductors. The low-temperature and high-field superconducting phase is a candidate for the odd-parity pair-density-wave state, suggesting a possibility of topological superconductivity as spin-triplet superconductors are. In this paper, we first derive the formula expressing the $mathbb{Z}_2$ invariant of glide symmetric and time-reversal symmetry broken superconductors by the number of Fermi surfaces on a glide invariant line. Next, we conduct a first-principles calculation for the electronic structure of CeRh$_2$As$_2$. Combining the results, we show that the field-induced odd-parity superconducting phase of CeRh$_2$As$_2$ is a platform of topological crystalline superconductivity protected by the nonsymmorphic glide symmetry and accompanied by boundary Majorana fermions.
We report the synthesis, electronic properties, and electronic structure of ullmannite-type PtSbS, which has a cubic crystal structure without space inversion symmetry. Electrical resistivity and magnetization measured at low temperatures suggested t hat this compound is a bulk superconductor with a superconducting transition temperature of Tc = 0.15 K. First principles calculations indicated that Fermi surfaces of PtSbS include strongly nested hole pockets, which can make this compound interesting if they contribute to the emergence of superconductivity.
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse t of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently, other proposed $p$-wave scenarios are still viable. Here, field-dependent $^{17}$O Knight shift measurements are compared to corresponding specific heat measurements, previously reported. We conclude that the shift results can be accounted for by the expected field-induced quasiparticle response only. An upper bound for the condensate magnetic response of $<10%$ of the normal state susceptibility is sufficient to exclude odd-parity candidates.
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first concrete example, CuxBi2Se3, was discovered last year, but the search for new materials has so far been hindered by the lack of guiding principle. Here, we report point-contact spectroscopy experiments showing that the low-carrier-density superconductor Sn_{1-x}In_{x}Te is accompanied with surface Andreev bound states which, with the help of theoretical analysis, give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of topological superconductivity in Sn_{1-x}In_{x}Te and CuxBi2Se3 demonstrates that odd-parity pairing favored by strong spin-orbit coupling is a common underlying mechanism for materializing topological superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا