ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum patterns of genome size variation in angiosperms

76   0   0.0 ( 0 )
 نشر من قبل Liaofu Luo
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nuclear DNA amount in angiosperms is studied from the eigen-value equation of the genome evolution operator H. The operator H is introduced by physical simulation and it is defined as a function of the genome size N and the derivative with respective to the size. The discontinuity of DNA size distribution and its synergetic occurrence in related angiosperms species are successfully deduced from the solution of the equation. The results agree well with the existing experimental data of Aloe, Clarkia, Nicotiana, Lathyrus, Allium and other genera. It may indicate that the evolutionary constrains on angiosperm genome are essentially of quantum origin.



قيم البحث

اقرأ أيضاً

140 - Liaofu Luo 2014
A model of genome evolution is proposed. Based on three assumptions the evolutionary theory of a genome is formulated. The general law on the direction of genome evolution is given. Both the deterministic classical equation and the stochastic quantum equation are proposed. It is proved that the classical equation can be put in a form of the least action principle and the latter can be used for obtaining the quantum generalization of the evolutionary law. The wave equation and uncertainty relation for the quantum evolution are deduced logically. It is shown that the classical trajectory is a limiting case of the general quantum evolution depicted in the coarse-grained time. The observed smooth/sudden evolution is interpreted by the alternating occurrence of the classical and quantum phases. The speciation event is explained by the quantum transition in quantum phase. Fundamental constants of time dimension, the quantization constant and the evolutionary inertia, are introduced for characterizing the genome evolution. The size of minimum genome is deduced from the quantum uncertainty lower bound. The present work shows the quantum law may be more general than thought, since it plays key roles not only in atomic physics, but also in genome evolution.
The coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, has caused 60 millions of infections and 1.38 millions of fatalities. Genomic analysis of SARS-CoV-2 can provide insights on drug design and vaccine development for co ntrolling the pandemic. Inverted repeats in a genome greatly impact the stability of the genome structure and regulate gene expression. Inverted repeats involve cellular evolution and genetic diversity, genome arrangements, and diseases. Here, we investigate the inverted repeats in the coronavirus SARS-CoV-2 genome. We found that SARS-CoV-2 genome has an abundance of inverted repeats. The inverted repeats are mainly located in the gene of the Spike protein. This result suggests the Spike protein gene undergoes recombination events, therefore, is essential for fast evolution. Comparison of the inverted repeat signatures in human and bat coronaviruses suggest that SARS-CoV-2 is mostly related SARS-related coronavirus, SARSr-CoV/RaTG13. The study also reveals that the recent SARS-related coronavirus, SARSr-CoV/RmYN02, has a high amount of inverted repeats in the spike protein gene. Besides, this study demonstrates that the inverted repeat distribution in a genome can be considered as the genomic signature. This study highlights the significance of inverted repeats in the evolution of SARS-CoV-2 and presents the inverted repeats as the genomic signature in genome analysis.
AMP activated protein kinase (AMPK) is a critical energy sensor, regulating signaling networks involved in pathology including metabolic diseases and cancer. This increasingly recognized role of AMPK has prompted tremendous research efforts to develo p new pharmacological AMPK activators. To precisely study the role of AMPK, and the specificity and activity of AMPK activators in cellular models, genetic AMPK inactivating tools are required. We report here methods for genetic inactivation of AMPK $alpha1/ alpha2$ catalytic subunits in human cell lines by the CRISPR/Cas9 technology, a recent breakthrough technique for genome editing.
The classification of life should be based upon the fundamental mechanism in the evolution of life. We found that the global relationships among species should be circular phylogeny, which is quite different from the common sense based upon phylogene tic trees. The genealogical circles can be observed clearly according to the analysis of protein length distributions of contemporary species. Thus, we suggest that domains can be defined by distinguished phylogenetic circles, which are global and stable characteristics of living systems. The mechanism in genome size evolution has been clarified; hence main component questions on C-value enigma can be explained. According to the correlations and quasi-periodicity of protein length distributions, we can also classify life into three domains.
234 - Garri Davydyan 2021
Ability of smooth muscles to contract in response to distension plays a crucial role in motor function of intestine. Qualitative analysis of dynamical models using myogenic active property of smooth muscles has shown well agreement with physiologic d ata. Considered as a self-regulatory unit, function of gastrointestinal (GI) segment is assumed to be regulated by integration of basis patterns providing accumulation and propagation of intestinal content. By implementing external, depending on neural system, variable to the previous model, and considering two attaches to one another reservoirs as a physical analogue of the segmental partition of intestine, a system of six ODE equations, three for each reservoir, describes coordinated wall motions and propagation of the content from one reservoir to another. It was shown that besides negative feedback (NFB), other functional patterns, namely positive feedback (PFB) and reciprocal links (RL) are involved in regulations of filling-emptying cycle. Being integrated in a whole functional system these three patterns expressed in a matrix form represent basis elements of imaginary part of coquaternion which with identity basis component is an algebraically closed structure under addition and multiplication of its elements. A coquaternion ring may be considered as a model of inner self-regulatory functional structure providing coordinated wall motions of GI tract portions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا