ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

76   0   0.0 ( 0 )
 نشر من قبل Euijoon Ahn
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.

قيم البحث

اقرأ أيضاً

Deformable image registration is widely utilized in medical image analysis, but most proposed methods fail in the situation of complex deformations. In this paper, we pre-sent a cascaded feature warping network to perform the coarse-to-fine registrat ion. To achieve this, a shared-weights encoder network is adopted to generate the feature pyramids for the unaligned images. The feature warping registration module is then used to estimate the deformation field at each level. The coarse-to-fine manner is implemented by cascading the module from the bottom level to the top level. Furthermore, the multi-scale loss is also introduced to boost the registration performance. We employ two public benchmark datasets and conduct various experiments to evaluate our method. The results show that our method outperforms the state-of-the-art methods, which also demonstrates that the cascaded feature warping network can perform the coarse-to-fine registration effectively and efficiently.
Deep learning based medical image diagnosis has shown great potential in clinical medicine. However, it often suffers two major difficulties in real-world applications: 1) only limited labels are available for model training, due to expensive annotat ion costs over medical images; 2) labeled images may contain considerable label noise (e.g., mislabeling labels) due to diagnostic difficulties of diseases. To address these, we seek to exploit rich labeled data from relevant domains to help the learning in the target task via {Unsupervised Domain Adaptation} (UDA). Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm, which conducts transferability-aware adaptation and conquers label noise in a collaborative way. We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images. Promising experimental results demonstrate the superiority and generalization of the proposed method.
The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale, annotated training data. However, there is a paucity of annotated data available due to the complexity of manual annot ation. To overcome this problem, a popular approach is to use transferable knowledge across different domains by: 1) using a generic feature extractor that has been pre-trained on large-scale general images (i.e., transfer-learned) but which not suited to capture characteristics from medical images; or 2) fine-tuning generic knowledge with a relatively smaller number of annotated images. Our aim is to reduce the reliance on annotated training data by using a new hierarchical unsupervised feature extractor with a convolutional auto-encoder placed atop of a pre-trained convolutional neural network. Our approach constrains the rich and generic image features from the pre-trained domain to a sophisticated representation of the local image characteristics from the unannotated medical image domain. Our approach has a higher classification accuracy than transfer-learned approaches and is competitive with state-of-the-art supervised fine-tuned methods.
Medical image analysis using supervised deep learning methods remains problematic because of the reliance of deep learning methods on large amounts of labelled training data. Although medical imaging data repositories continue to expand there has not been a commensurate increase in the amount of annotated data. Hence, we propose a new unsupervised feature learning method that learns feature representations to then differentiate dissimilar medical images using an ensemble of different convolutional neural networks (CNNs) and K-means clustering. It jointly learns feature representations and clustering assignments in an end-to-end fashion. We tested our approach on a public medical dataset and show its accuracy was better than state-of-the-art unsupervised feature learning methods and comparable to state-of-the-art supervised CNNs. Our findings suggest that our method could be used to tackle the issue of the large volume of unlabelled data in medical imaging repositories.
Deep learning techniques have successfully been employed in numerous computer vision tasks including image segmentation. The techniques have also been applied to medical image segmentation, one of the most critical tasks in computer-aided diagnosis. Compared with natural images, the medical image is a gray-scale image with low-contrast (even with some invisible parts). Because some organs have similar intensity and texture with neighboring organs, there is usually a need to refine automatic segmentation results. In this paper, we propose an interactive deep refinement framework to improve the traditional semantic segmentation networks such as U-Net and fully convolutional network. In the proposed framework, we added a refinement network to traditional segmentation network to refine the segmentation results.Experimental results with public dataset revealed that the proposed method could achieve higher accuracy than other state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا