ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical analogy of a cat state using vortex light

345   0   0.0 ( 0 )
 نشر من قبل Shilong Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cat states are systems in a superposition of macroscopically distinguishable states; this superposition can be of either classically or quantum distinct state, regardless of the number of particles or modes involved. Here, we constructed an experimental model that simulates an optical cat state by engineering the classical orbital angular momentum of light, referred to here as an analogous cat state (a-CS). In our scheme, the behaviors of the a-CS in position space show many similarities to the quantum version of the optical cat state in phase space, for example, movement, rotation, and interference. Experimentally, the a-CS, which has two spatially localized Gaussian intensity lobes, can be evolved from kitten to cat by engineering the acquired phase hologram. Additionally, we simulated the decoherence of the a-CS influenced by atmospheric turbulence. The a-CS provides a reliable tool for visualizing and studying the behaviors of quantum cat states in phase space.



قيم البحث

اقرأ أيضاً

Much of the richness in nature arises due to the connection between classical and quantum mechanics. In advanced science, the tools of quantum mechanics was not only applied in microscopic description but also found its efficacy in classical phenomen a, broadening the fundamental scientific frontier. A pioneering inspiration is substituting Fock state with structured spatial modes to reconstruct a novel Hilbert space. Based on this idea, here we propose the classical analogy of squeezed coherent state for the first time, deriving classical wave-packets by applying squeezed and displacement operators on free space structured modes. Such a generalized structured light not only creates new degrees of freedom into structured light, including tunable squeezed degree and displacement degree but also exhibits direct correlation between quadrature operator space and real space. Versatile generalized classical squeezed states could be experimentally generated by a simple large-aperture off-axis-pumped solid-state laser. On account of its tunablity, we initially put forward a blueprint using classical structured light, an analogy of squeezed states to realize super-resolution imaging, providing an alternative way to beat diffraction limit as well as opening an original page for subsequent applications of high-dimensional structured light, such as high-sensitive measurement and ultra-precise optical manipulation.
148 - Beno^it Chalopin 2011
Quantum computation and communication protocols require quantum resources which are in the continuous variable regime squeezed and/or quadrature entangled optical modes. To perform more and more complex and robust protocols, one needs sources that ca n produce in a controlled way highly multimode quantum states of light. One possibility is to mix different single mode quantum resources. Another is to directly use a multimode device, either in the spatial or in the frequency domain. We present here the first experimental demonstration of a device capable of producing simultanuously several squeezed transverse modes of the same frequency and which is potentially scalable. We show that this device, which is an Optical Parametric Oscillator using a self-imaging cavity, produces a multimode quantum resource made of three squeezed transverse modes.
We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacemen t operator. Consequently, such generalized cat states can be formally considered as nonlinear coherent states. We then show that Glauber-Fock photonic lattices endowed with alternating positive and negative coupling coefficients give rise to classical analogs of such cat states. In addition, it is pointed out that the analytic propagator of these deformed Glauber-Fock arrays explicitly contains the Wigner operator opening the possibility to observe Wigner functions of the quantum harmonic oscillator in the classical domain.
In this paper, we present a coherent state-vector method which can explain the results of a nested linear Mach-Zehnder Interferometric experiment. Such interferometers are used widely in Quantum Information and Quantum Optics experiments and also in designing quantum circuits. We have specifically considered the case of an experiment by Danan emph{et al.} (Phys. Rev. Lett. textbf{111}, 240402 (2013)) where the outcome of the experiment was spooky by our intuitive guesses. However we have been able to show by our method that the results of this experiment is indeed expected within the standard formalism of Quantum Mechanics using any classical state of a single-mode radiation field as the input into the nested interferometric set-up of the aforesaid experiment and thereby looking into the power spectrum of the output beam.
We propose the use of hybrid entanglement in an entanglement swapping protocol, as means of distributing a Bell state with high fidelity to two parties, Alice and Bob. The hybrid entanglement used in this work is described as a discrete variable (Foc k state) and a continuous variable (cat state superposition) entangled state. We model equal and unequal levels of photonic loss between the two propagating continuous variable modes, before detecting these states via a projective vacuum-one-photon measurement, and the other mode via balanced homodyne detection. We investigate homodyne measurement imperfections, and the associated success probability of the measurement schemes chosen in this protocol. We show that our entanglement swapping scheme is resilient to low levels of photonic losses, as well as low levels of averaged unequal losses between the two propagating modes, and show an improvement in this loss resilience over other hybrid entanglement schemes using coherent state superpositions as the propagating modes. Finally, we conclude that our protocol is suitable for potential quantum networking applications which require two nodes to share entanglement separated over a distance of 5-10 km when used with a suitable entanglement purification scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا