ترغب بنشر مسار تعليمي؟ اضغط هنا

The conditional permutation test for independence while controlling for confounders

115   0   0.0 ( 0 )
 نشر من قبل Thomas Berrett
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general new method, the conditional permutation test, for testing the conditional independence of variables $X$ and $Y$ given a potentially high-dimensional random vector $Z$ that may contain confounding factors. The proposed test permutes entries of $X$ non-uniformly, so as to respect the existing dependence between $X$ and $Z$ and thus account for the presence of these confounders. Like the conditional randomization test of Cand`es et al. (2018), our test relies on the availability of an approximation to the distribution of $X mid Z$. While Cand`es et al. (2018)s test uses this estimate to draw new $X$ values, for our test we use this approximation to design an appropriate non-uniform distribution on permutations of the $X$ values already seen in the true data. We provide an efficient Markov Chain Monte Carlo sampler for the implementation of our method, and establish bounds on the Type I error in terms of the error in the approximation of the conditional distribution of $Xmid Z$, finding that, for the worst case test statistic, the inflation in Type I error of the conditional permutation test is no larger than that of the conditional randomization test. We validate these theoretical results with experiments on simulated data and on the Capital Bikeshare data set.


قيم البحث

اقرأ أيضاً

Missing data and confounding are two problems researchers face in observational studies for comparative effectiveness. Williamson et al. (2012) recently proposed a unified approach to handle both issues concurrently using a multiply-robust (MR) metho dology under the assumption that confounders are missing at random. Their approach considers a union of models in which any submodel has a parametric component while the remaining models are unrestricted. We show that while their estimating function is MR in theory, the possibility for multiply robust inference is complicated by the fact that parametric models for different components of the union model are not variation independent and therefore the MR property is unlikely to hold in practice. To address this, we propose an alternative transparent parametrization of the likelihood function, which makes explicit the model dependencies between various nuisance functions needed to evaluate the MR efficient score. The proposed method is genuinely doubly-robust (DR) in that it is consistent and asymptotic normal if one of two sets of modeling assumptions holds. We evaluate the performance and doubly robust property of the DR method via a simulation study.
Aggregating multiple effects is often encountered in large-scale data analysis where the fraction of significant effects is generally small. Many existing methods cannot handle it effectively because of lack of computational accuracy for small p-valu es. The Cauchy combination test (abbreviated as CCT) ( J Am Statist Assoc, 2020, 115(529):393-402) is a powerful and computational effective test to aggregate individual $p$-values under arbitrary correlation structures. This work revisits CCT and shows three key contributions including that (i) the tail probability of CCT can be well approximated by a standard Cauchy distribution under much more relaxed conditions placed on individual p-values instead of the original test statistics; (ii) the relaxation conditions are shown to be satisfied for many popular copulas formulating bivariate distributions; (iii) the power of CCT is no less than that of the minimum-type test as the number of tests goes to infinity with some regular conditions. These results further broaden the theories and applications of CCT. The simulation results verify the theoretic results and the performance of CCT is further evaluated with data from a prostate cancer study.
We study a class of determinantal ideals that are related to conditional independence (CI) statements with hidden variables. Such CI statements correspond to determinantal conditions on a matrix whose entries are probabilities of events involving the observed random variables. We focus on an example that generalizes the CI ideals of the intersection axiom. In this example, the minimal primes are again determinantal ideals, which is not true in general.
We present the $U$-Statistic Permutation (USP) test of independence in the context of discrete data displayed in a contingency table. Either Pearsons chi-squared test of independence, or the $G$-test, are typically used for this task, but we argue th at these tests have serious deficiencies, both in terms of their inability to control the size of the test, and their power properties. By contrast, the USP test is guaranteed to control the size of the test at the nominal level for all sample sizes, has no issues with small (or zero) cell counts, and is able to detect distributions that violate independence in only a minimal way. The test statistic is derived from a $U$-statistic estimator of a natural population measure of dependence, and we prove that this is the unique minimum variance unbiased estimator of this population quantity. The practical utility of the USP test is demonstrated on both simulated data, where its power can be dramatically greater than those of Pearsons test and the $G$-test, and on real data. The USP test is implemented in the R package USP.
Researchers are often interested in treatment effects on outcomes that are only defined conditional on a post-treatment event status. For example, in a study of the effect of different cancer treatments on quality of life at end of follow-up, the qua lity of life of individuals who die during the study is undefined. In these settings, a naive contrast of outcomes conditional on the post-treatment variable is not an average causal effect, even in a randomized experiment. Therefore the effect in the principal stratum of those who would have the same value of the post-treatment variable regardless of treatment, such as the always survivors in a truncation by death setting, is often advocated for causal inference. While this principal stratum effect is a well defined causal contrast, it is often hard to justify that it is relevant to scientists, patients or policy makers, and it cannot be identified without relying on unfalsifiable assumptions. Here we formulate alternative estimands, the conditional separable effects, that have a natural causal interpretation under assumptions that can be falsified in a randomized experiment. We provide identification results and introduce different estimators, including a doubly robust estimator derived from the nonparametric influence function. As an illustration, we estimate a conditional separable effect of chemotherapies on quality of life in patients with prostate cancer, using data from a randomized clinical trial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا