ﻻ يوجد ملخص باللغة العربية
The study of historical great geomagnetic storms is crucial for assessing the possible risks to the technological infrastructure of a modern society, caused by extreme space-weather events. The normal benchmark has been the great geomagnetic storm of September 1859, the so-called Carrington Event. However, there are numerous records of another great geomagnetic storm in February 1872. This storm, about 12 years after the Carrington Event, resulted in comparable magnetic disturbances and auroral displays over large areas of the Earth. We have revisited this great geomagnetic storm in terms of the auroral and sunspot records in the historical documents from East Asia. In particular, we have surveyed the auroral records from East Asia and estimated the equatorward boundary of the auroral oval to be near 24.3 deg invariant latitude (ILAT), on the basis that the aurora was seen near the zenith at Shanghai (20 deg magnetic latitude, MLAT). These results confirm that this geomagnetic storm of February 1872 was as extreme as the Carrington Event, at least in terms of the equatorward motion of the auroral oval. Indeed, our results support the interpretation of the simultaneous auroral observations made at Bombay (10 deg MLAT). The East Asian auroral records have indicated extreme brightness, suggesting unusual precipitation of high-intensity, low-energy electrons during this geomagnetic storm. We have compared the duration of the East Asian auroral displays with magnetic observations in Bombay and found that the auroral displays occurred in the initial phase, main phase, and early recovery phase of the magnetic storm.
Given the infrequency of extreme geomagnetic storms, it is significant to note the concentration of three extreme geomagnetic storms in 1941, whose intensities ranked fourth, twelfth, and fifth within the aa index between 1868-2010. Among them, the g
Newly discovered descriptions about the great aurora observed in March 1582 are presented in this work. These records were made by Portuguese observers from Lisbon. Both records described the aurora like a great fire in the northern part of the sky.
This section shows an overview of a recent development of the studies on great space weather events in history. Its discussion starts from the Carrington event and compare its intensity with the extreme storms within the coverage of the regular magne
The Carrington storm (September 1/2, 1859) is one of the largest magnetic storms ever observed and it has caused global auroral displays in low-latitude areas, together with a series of multiple magnetic storms during August 28 and September 4, 1859.
Nuclear astrophysics is an interdisciplinary research field of nuclear physics and astrophysics, seeking for the answer to a question, how to understand the evolution of the Universe with the nuclear processes which we learn. We review the research a