ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Gradients, Mobile Layers, Tg Shifts, Role of Vitrification Criterion and Inhomogeneous Decoupling in Free-Standing Polymer Films

149   0   0.0 ( 0 )
 نشر من قبل Anh Phan Mr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The force-level Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in glass-forming free-standing thin films is re-visited to improve its treatment of collective elasticity effects. The naive cut off of the isotropic bulk displacement field approximation is improved to explicitly include spatial anisotropy with a modified boundary condition consistent with a step function liquid-vapor interface. The consequences of this improvement on dynamical predictions are quantitative but of significant magnitude and in the direction of further speeding up dynamics and further suppressing Tg. The theory is applied to thin films and also thick films to address new questions for three different polymers of different dynamic fragility. Variation of the vitrification time scale criterion over many orders of magnitude is found to have a minor effect on changes of the film-averaged Tg relative to its bulk value. The mobile layer length scale grows strongly with cooling and correlates in a nearly linear manner with the effective barrier deduced from the corresponding bulk isotropic liquid alpha relaxation time. The theory predicts a new type of spatially inhomogeneous dynamic decoupling corresponding to an effective factorization of the total barrier into its bulk temperature-dependent value multiplied by a function that only depends on location in the film. The effective decoupling exponent grows as the vapor surface is approached. Larger reductions of the absolute value of Tg shifts in thin polymer films are predicted for longer time vitrification criteria and more fragile polymers. Quantitative no-fit-parameter comparisons with experiment and simulation for film-thickness-dependent Tg shifts of PS and PC are in reasonable accord with the theory, including a nearly 100 K suppression of Tg in 4 nm PC films. Predictions are made for polyisobutylene thin films.

قيم البحث

اقرأ أيضاً

Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ul tra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently explored yet. Here, we report about classical Molecular Dynamics simulations of hydrated Nafion thin-films in contact with unstructured supports, characterized by their global wetting properties only. We have investigated structure and transport in different regions of the film and found evidences of strongly heterogeneous behavior. We speculate about the implications of our work on experimental and technological activity.
374 - Sergey Khrapak 2020
It is demonstrated that the Lindemanns criterion of melting can be formulated for two-dimensional classical solids using statistical mechanics arguments. With this formulation the expressions for the melting temperature are equivalent in three and tw o dimensions. Moreover, in two dimensions the Lindemanns melting criterion essentially coincides with the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young melting condition of dislocation unbinding.
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar e studied, one by Monte Carlo methods, the other by Molecular Dynamics, using a fast implementation on graphics processing units (GPUs). It is shown that the monomer density profiles $rho(z)$ in the $z$-direction perpendicular to the surface for rings and linear chains are practically identical, $rho_R(2 N_L, z)=rho_L(N_L, z)$. The same applies to the pressure, exerted on a piston at hight z, as well. While the gyration radii components of rings and chains in $z$-direction coincide, too, and increase linearly with $N_L$, the transverse components differ, even with respect to their scaling properties: $R_{gxy}^{(L)} propto N_L^{1/2}$, $R_{gxy}^{(R)} propto N_L^{0.4}$. These properties are interpreted in terms of the statistical properties known for ring polymers in dense melts.
A lattice model is presented for the simulation of dynamics in polymeric systems. Each polymer is represented as a chain of monomers, residing on a sequence of nearest-neighbor sites of a face-centered-cubic lattice. The polymers are self- and mutual ly avoiding walks: no lattice site is visited by more than one polymer, nor revisited by the same polymer after leaving it. The dynamics occurs through single-monomer displacements over one lattice spacing. To demonstrate the high computational efficiency of the model, we simulate a dense binary polymer mixture with repelling nearest-neighbor interactions between the two types of polymers, and observe the phase separation over a long period of time. The simulations consist of a total of 46,080 polymers, 100 monomers each, on a lattice with 13,824,000 sites, and an interaction strength of 0.1 kT. In the final two decades of time, the domain-growth is found to be d(t) ~ t^1/3, as expected for a so-called Model B system.
We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix e lasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubber-like materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا