ترغب بنشر مسار تعليمي؟ اضغط هنا

Ten Simple Rules When Considering Retirement

413   0   0.0 ( 0 )
 نشر من قبل Philip Bourne
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Philip E. Bourne




اسأل ChatGPT حول البحث

This is an article submitted to the Ten Simple Rules series of professional development articles published by PLOS Computational Biology.

قيم البحث

اقرأ أيضاً

83 - Cameron Mura 2014
One need only compare the number of three-dimensional molecular illustrations in the first (1990) and third (2004) editions of Voet & Voets Biochemistry in order to appreciate this fields profound communicative value in modern biological sciences -- ranging from medicine, physiology, and cell biology, to pharmaceutical chemistry and drug design, to structural and computational biology. The cliche about a picture being worth a thousand words is quite poignant here: The information content of an effectively-constructed piece of molecular graphics can be immense. Because biological function arises from structure, it is difficult to overemphasize the utility of visualization and graphics in molding our current understanding of the molecular nature of biological systems. Nevertheless, creating effective molecular graphics is not easy -- neither conceptually, nor in terms of effort required. The present collection of Rules is meant as a guide for those embarking upon their first molecular illustrations.
Reproducibility of computational studies is a hallmark of scientific methodology. It enables researchers to build with confidence on the methods and findings of others, reuse and extend computational pipelines, and thereby drive scientific progress. Since many experimental studies rely on computational analyses, biologists need guidance on how to set up and document reproducible data analyses or simulations. In this paper, we address several questions about reproducibility. For example, what are the technical and non-technical barriers to reproducible computational studies? What opportunities and challenges do computational notebooks offer to overcome some of these barriers? What tools are available and how can they be used effectively? We have developed a set of rules to serve as a guide to scientists with a specific focus on computational notebook systems, such as Jupyter Notebooks, which have become a tool of choice for many applications. Notebooks combine detailed workflows with narrative text and visualization of results. Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses.
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling. A rtificial neural networks are a particular class of machine learning algorithms and models that evolved into what is now described as deep learning. Given the computational advances made in the last decade, deep learning can now be applied to massive data sets and in innumerable contexts. Therefore, deep learning has become its own subfield of machine learning. In the context of biological research, it has been increasingly used to derive novel insights from high-dimensional biological data. To make the biological applications of deep learning more accessible to scientists who have some experience with machine learning, we solicited input from a community of researchers with varied biological and deep learning interests. These individuals collaboratively contributed to this manuscripts writing using the GitHub version control platform and the Manubot manuscript generation toolset. The goal was to articulate a practical, accessible, and concise set of guidelines and suggestions to follow when using deep learning. In the course of our discussions, several themes became clear: the importance of understanding and applying machine learning fundamentals as a baseline for utilizing deep learning, the necessity for extensive model comparisons with careful evaluation, and the need for critical thought in interpreting results generated by deep learning, among others.
A variety of physical, social and biological systems generate complex fluctuations with correlations across multiple time scales. In physiologic systems, these long-range correlations are altered with disease and aging. Such correlated fluctuations i n living systems have been attributed to the interaction of multiple control systems; however, the mechanisms underlying this behavior remain unknown. Here, we show that a number of distinct classes of dynamical behaviors, including correlated fluctuations characterized by $1/f$-scaling of their power spectra, can emerge in networks of simple signaling units. We find that under general conditions, complex dynamics can be generated by systems fulfilling two requirements: i) a ``small-world topology and ii) the presence of noise. Our findings support two notable conclusions: first, complex physiologic-like signals can be modeled with a minimal set of components; and second, systems fulfilling conditions (i) and (ii) are robust to some degree of degradation, i.e., they will still be able to generate $1/f$-dynamics.
Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterise uncertainty in model inputs and how that propaga tes through to outputs or predictions. In this perspective piece we draw attention to an important and under-addressed source of uncertainty in our predictions -- that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes (GPs) and autoregressive-moving-average (ARMA) models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا