ﻻ يوجد ملخص باللغة العربية
Let $pi in mathfrak{S}_m$ and $sigma in mathfrak{S}_n$ be permutations. An occurrence of $pi$ in $sigma$ as a consecutive pattern is a subsequence $sigma_i sigma_{i+1} cdots sigma_{i+m-1}$ of $sigma$ with the same order relations as $pi$. We say that patterns $pi, tau in mathfrak{S}_m$ are strongly c-Wilf equivalent if for all $n$ and $k$, the number of permutations in $mathfrak{S}_n$ with exactly $k$ occurrences of $pi$ as a consecutive pattern is the same as for $tau$. In 2018, Dwyer and Elizalde conjectured (generalizing a conjecture of Elizalde from 2012) that if $pi, tau in mathfrak{S}_m$ are strongly c-Wilf equivalent, then $(tau_1, tau_m)$ is equal to one of $(pi_1, pi_m)$, $(pi_m, pi_1)$, $(m+1 - pi_1, m+1-pi_m)$, or $(m+1 - pi_m, m+1 - pi_1)$. We prove this conjecture using the cluster method introduced by Goulden and Jackson in 1979, which Dwyer and Elizalde previously applied to prove that $|pi_1 - pi_m| = |tau_1 - tau_m|$. A consequence of our result is the full classification of c-Wilf equivalence for a special class of permutations, the non-overlapping permutations. Our approach uses analytic methods to approximate the number of linear extensions of the cluster posets of Elizalde and Noy.
Stankova and West showed that for any non-negative integer $s$ and any permutation $gamma$ of ${4,5,dots,s+3}$ there are as many permutations that avoid $231gamma$ as there are that avoid $312gamma$. We extend this result to the setting of words.
Building off recent work of Garg and Peng, we continue the investigation into classical and consecutive pattern avoidance in rooted forests, resolving some of their conjectures and questions and proving generalizations whenever possible. Through exte
The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spac
We launch a systematic study of the refined Wilf-equivalences by the statistics $mathsf{comp}$ and $mathsf{iar}$, where $mathsf{comp}(pi)$ and $mathsf{iar}(pi)$ are the number of components and the length of the initial ascending run of a permutation
Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform