ﻻ يوجد ملخص باللغة العربية
We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type inequality that takes into account both the dimensional as well as the magnetic flux contributions. Second, in the three-dimensional Euclidean space, we derive a non-trivial magnetic Hardy inequality for a magnetic field that vanishes at infinity and diverges along a plane.
We study the quadratic form associated to the kinetic energy operator in the presence of an external magnetic field in d = 3. We show that if the radial component of the magnetic field does not vanish identically, then the classical lower bound given
In the presence of the homogeneous electric field ${bf E}$ and the homogeneous perpendicular magnetic field ${bf B}$, the classical trajectory of a quantum particle on ${mathbb R}^2$ moves with drift velocity $alpha$ which is perpendicular to the ele
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furt
Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supporte
We give a short proof of a recently established Hardy-type inequality due to Keller, Pinchover, and Pogorzelski together with its optimality. Moreover, we identify the remainder term which makes it into an identity.